41 条题解
-
3绿色的云 LV 10 @ 2013-12-29 14:57:45
P121380人环游世界 非上下界费用流解法:
首先把每个点拆成两个,分别表示来源跟去向,用wi,ui表示,那么由于每个点会有vi个人经过,那么连边(S,wi,vi,0),(ui,T,vi,0)((u,v,f,c)表示从u连边到v,流量f,费用c),那么对于每条费用为pi的航线(s,t)就有连边(ws,ut,inf,pi),又由于有些人可以直接在某个城市出发,那么另加一个点k,连边(S,k,m,0),对于每个城市i,连边(k,ui,inf,0),然后跑一次最小费用最大流,那么mincost就是答案了。。。(这算是经典模型了吧。。。)
zkw费用流写渣了。。。好慢好慢:编译成功
测试数据 #0: Accepted, time = 78 ms, mem = 952 KiB, score = 10
测试数据 #1: Accepted, time = 78 ms, mem = 956 KiB, score = 10
测试数据 #2: Accepted, time = 0 ms, mem = 504 KiB, score = 10
测试数据 #3: Accepted, time = 78 ms, mem = 952 KiB, score = 10
测试数据 #4: Accepted, time = 0 ms, mem = 508 KiB, score = 10
测试数据 #5: Accepted, time = 62 ms, mem = 956 KiB, score = 10
测试数据 #6: Accepted, time = 93 ms, mem = 952 KiB, score = 10
测试数据 #7: Accepted, time = 109 ms, mem = 956 KiB, score = 10
测试数据 #8: Accepted, time = 109 ms, mem = 952 KiB, score = 10
测试数据 #9: Accepted, time = 93 ms, mem = 952 KiB, score = 10
Accepted, time = 700 ms, mem = 956 KiB, score = 100#include <cstdio>
#include <algorithm>
#include <cstring>using namespace std ;
#define MAXN 210
#define inf 0x7fffffffstruct network {
int S , T ;
struct edge {
edge *next , *pair ;
int t , f , c ;
} *head[ MAXN ] ;network( ) {
memset( head , 0 , sizeof( head ) ) ;
}void Add( int s , int t , int f , int c ) {
edge *p = new( edge ) ;
p -> t = t , p -> f = f , p -> c = c , p -> next = head[ s ] ;
head[ s ] = p ;
}void AddEdge( int s , int t , int f , int c ) {
Add( s , t , f , c ) , Add( t , s , 0 , - c ) ;
head[ s ] -> pair = head[ t ] , head[ t ] -> pair = head[ s ] ;
}int dist[ MAXN ] , slack[ MAXN ] , cost ;
bool f[ MAXN ] ;int aug( int v , int flow ) {
if ( v == T ) {
cost += flow * dist[ S ] ;
return flow ;
}
f[ v ] = true ;
int rec = 0 ;
for ( edge *p = head[ v ] ; p ; p = p -> next ) if ( p -> f && ! f[ p -> t ] ) {
if ( dist[ v ] == dist[ p -> t ] + p -> c ) {
int ret = aug( p -> t , min( flow - rec , p -> f ) ) ;
p -> f -= ret , p -> pair -> f += ret ;
if ( ( rec += ret ) == flow ) return flow ;
} else slack[ p -> t ] = min( slack[ p -> t ] , dist[ p -> t ] + p -> c - dist[ v ] ) ;
}
return rec ;
}bool relabel( ) {
int delta = inf ;
for ( int i = 0 ; i ++ < T ; ) if ( ! f[ i ] ) delta = min( delta , slack[ i ] ) ;
if ( delta == inf ) return false ;
for ( int i = 0 ; i ++ < T ; ) if ( f[ i ] ) dist[ i ] += delta ;
return true ;
}int costflow( ) {
cost = 0 ;
memset( dist , 0 , sizeof( dist ) ) ;
do {
for ( int i = 0 ; i ++ < T ; ) slack[ i ] = inf ;
do {
memset( f , false , sizeof( f ) ) ;
} while ( aug( S , inf ) ) ;
} while ( relabel( ) ) ;
return cost ;
}} net ;
int n , m , v[ MAXN ][ 2 ] , V = 0 ;
int main( ) {
scanf( "%d%d" , &n , &m ) ;
for ( int i = 0 ; i ++ < n ; ) v[ i ][ 0 ] = ++ V , v[ i ][ 1 ] = ++ V ;
++ V ; net.S = ++ V ; net.T = ++ V ;
net.AddEdge( net.S , V - 2 , m , 0 ) ;
for ( int i = 0 ; i ++ < n ; ) {
int x ; scanf( "%d" , &x ) ;
net.AddEdge( net.S , v[ i ][ 0 ] , x , 0 ) ;
net.AddEdge( v[ i ][ 1 ] , net.T , x , 0 ) ;
net.AddEdge( V - 2 , v[ i ][ 1 ] , inf , 0 ) ;
}
for ( int i = 0 ; i ++ < n - 1 ; ) {
for ( int j = i ; j ++ < n ; ) {
int x ; scanf( "%d" , &x ) ;
if ( x != -1 ) {
net.AddEdge( v[ i ][ 0 ] , v[ j ][ 1 ] , inf , x ) ;
}
}
}
printf( "%d\n" , net.costflow( ) ) ;
return 0 ;
} -
12017-07-15 16:51:56@
#include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iomanip> #include <algorithm> #include <vector> #include <deque> #include <limits> #include <string> #include <sstream> using namespace std; const int oo_min=0xcfcfcfcf,oo_max=0x3f3f3f3f; int n,m; vector<int> f; vector<int> e; vector<int> u; vector<int> pre; vector<int> vis; vector<vector<int> > c; vector<vector<int> > p; vector<vector<int> > ce; vector<vector<int> > cw; deque<int> q; void add_edge_1(int x,int y,int c_v,int p_v) { cw[x].push_back(y); c[x].push_back(c_v); p[x].push_back(p_v); ce[y].push_back(cw[x].size()-1); cw[y].push_back(x); c[y].push_back(0); p[y].push_back(-p_v); ce[x].push_back(cw[y].size()-1); } int bfs_1(int s,int t,int *flow,int *cost) { f.resize(0); f.resize(cw.size(),0); f[s]=oo_max; e.resize(0); e.resize(cw.size(),-1); u.resize(0); u.resize(cw.size(),oo_max); u[s]=0; pre.resize(0); pre.resize(cw.size(),-1); pre[s]=s; vis.resize(0); vis.resize(cw.size(),0); for (q.resize(0),vis[s]=1,q.push_back(s);(!q.empty());vis[q.front()]=0,q.pop_front()) { int now=q.front(); for (int i=0;i<cw[now].size();i++) if (c[now][i]&&u[now]+p[now][i]<u[cw[now][i]]) { f[cw[now][i]]=min(c[now][i],f[now]); e[cw[now][i]]=i; u[cw[now][i]]=u[now]+p[now][i]; pre[cw[now][i]]=now; if (vis[cw[now][i]]==0) vis[cw[now][i]]=1,q.push_back(cw[now][i]); } } (*flow)=f[t]; (*cost)=u[t]; return (pre[t]!=-1); } void min_cost_max_flow_1(int s,int t,int *flow,int *cost) { int temp_flow,temp_cost; while (bfs_1(s,t,&temp_flow,&temp_cost)) { for (int i=t;i!=s;i=pre[i]) c[pre[i]][e[i]]-=temp_flow,c[i][ce[pre[i]][e[i]]]+=temp_flow; (*flow)+=temp_flow; (*cost)+=(temp_flow*temp_cost); } } int main() { while (~scanf("%d%d",&n,&m)) { cw.resize(0); cw.resize(2*n+3); ce.resize(0); ce.resize(cw.size()); c.resize(0); c.resize(cw.size()); p.resize(0); p.resize(cw.size()); for (int i=0;i<cw.size();i++) { cw[i].resize(0); ce[i].resize(0); c[i].resize(0); p[i].resize(0); } add_edge_1(0,c.size()-2,m,0); for (int i=1;i<=n;i++) { int v; scanf("%d",&v); add_edge_1(0,i,v,0); add_edge_1(i+n,cw.size()-1,v,0); add_edge_1(cw.size()-2,i+n,oo_max,0); } for (int i=1;i<=n-1;i++) for (int j=1;j<=n-i;j++) { int cost; scanf("%d",&cost); if (cost!=-1) add_edge_1(i,i+j+n,oo_max,cost); } int ans_flow=0,ans_cost=0; min_cost_max_flow_1(0,c.size()-1,&ans_flow,&ans_cost); printf("%d\n",ans_cost); } }
-
02023-10-07 23:25:16@
/********************************************************
备注:
********************************************************/
#include <iostream>
#include <iomanip>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
#define LL long long
#define MAXM 3010
#define MAXN 3010
const int N =1e5+10;
const int INF =0x3f3f3f3f;
int main ()
{
int a,b;
cin>>a>>b;
cout<<a+b;
return 0;
} -
02017-01-04 14:38:55@
测试数据 #0: Accepted, time = 31 ms, mem = 1240 KiB, score = 10
测试数据 #1: Accepted, time = 31 ms, mem = 1244 KiB, score = 10
测试数据 #2: Accepted, time = 0 ms, mem = 668 KiB, score = 10
测试数据 #3: Accepted, time = 31 ms, mem = 1240 KiB, score = 10
测试数据 #4: Accepted, time = 0 ms, mem = 668 KiB, score = 10
测试数据 #5: Accepted, time = 46 ms, mem = 1240 KiB, score = 10
测试数据 #6: Accepted, time = 46 ms, mem = 1240 KiB, score = 10
测试数据 #7: Accepted, time = 62 ms, mem = 1240 KiB, score = 10
测试数据 #8: Accepted, time = 93 ms, mem = 1240 KiB, score = 10
测试数据 #9: Accepted, time = 93 ms, mem = 1240 KiB, score = 10
Accepted, time = 433 ms, mem = 1244 KiB, score = 100借用了楼下绿色的云的建图方法,对这些建模的方法的理解越来越快了,果然在草稿纸上画一下很容易理解啊。。
要加油,争取自己也能想出这样的建模方法代码
```c++
#include<iostream>
#include<iomanip>
#include<cstring>
#include<vector>
#include<sstream>
#include<algorithm>
#include<string>
#include<cstdio>
#include<math.h>
#include<map>
#include<cctype>
#include<queue>
#include<functional>
#include<set>
#define Mem(a,b) memset((a),(b),sizeof((a)))
#define Sy system("pause")
const int maxn = 1000;
const int INF = 0x3f3f3f;
using namespace std;struct MCMF{
struct Edge
{
int from, to, cap, flow, cost;
Edge(int a, int b, int c, int d, int e) :from(a), to(b), cap(c), flow(d), cost(e) {}
Edge(){}
};
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn], d[maxn], p[maxn], a[maxn];void init(int n){
this->n = n;
for (int i = 0; i < n; i += 1)G[i].clear(); edges.clear();
}void AddEdge(int from, int to, int cap, int cost){
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}bool BellmanFord(int s, int t, int & flow, int & cost){
for (int i = 0; i < n; i += 1) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front(); Q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i += 1){
Edge & e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]){
Q.push(e.to); inq[e.to] = 1;
}
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];for (int u = t; u != s; u = edges[p[u]].from){
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
return true;
}int MinCostMaxFlow(int s, int t, int & cost){
int flow = 0; cost = 0;
while (BellmanFord(s, t, flow, cost));
return flow;
}
};/*
S:0 Wi:[1,n] Ui:[n+1,2n] k:[2n+1] T[2n+2]
*/int main(){
MCMF D;
int n, m;
scanf("%d %d", &n, &m);
int s = 0, t = 2 * n + 2, k = 2 * n + 1;
int tmp;
D.init(2 * n + 3);
D.AddEdge(s, k, m, 0);
for (int i = 1; i <= n; i += 1){
scanf("%d", &tmp);
D.AddEdge(s, i, tmp, 0);
D.AddEdge(i + n, t, tmp, 0);
D.AddEdge(k, i + n, INF, 0);
}
for (int i = 1; i < n; i += 1){
for (int j = i + 1; j <= n; j += 1){
scanf("%d", &tmp);
if (tmp != -1) D.AddEdge(i, j + n, INF, tmp);
}
}int ans; D.MinCostMaxFlow(s, t, ans);
printf("%d\n", ans);
//Sy;
return 0;
}
``` -
02014-05-19 21:27:46@
按某云神的方法建图就可以了Orz,第一次用zkw,好快……
http://hi.baidu.com/macaulish64/item/7137993446fc99e9382ffa73
测试数据 #0: Accepted, time = 62 ms, mem = 3456 KiB, score = 10
测试数据 #1: Accepted, time = 78 ms, mem = 3452 KiB, score = 10
测试数据 #2: Accepted, time = 7 ms, mem = 3456 KiB, score = 10
测试数据 #3: Accepted, time = 62 ms, mem = 3456 KiB, score = 10
测试数据 #4: Accepted, time = 15 ms, mem = 3456 KiB, score = 10
测试数据 #5: Accepted, time = 62 ms, mem = 3452 KiB, score = 10
测试数据 #6: Accepted, time = 78 ms, mem = 3456 KiB, score = 10
测试数据 #7: Accepted, time = 109 ms, mem = 3456 KiB, score = 10
测试数据 #8: Accepted, time = 109 ms, mem = 3456 KiB, score = 10
测试数据 #9: Accepted, time = 93 ms, mem = 3452 KiB, score = 10 -
02013-09-02 19:36:29@
学习了。,。
-
02010-04-06 20:46:35@
Accepted 有效得分:100 有效耗时:529ms
有点慢
那个点内的反向弧是费用20000(不是-20000),弄错了...... -
02010-03-14 22:00:38@
很经典的模型 ~
-
02009-09-26 12:13:12@
杯具,为了个SX错误WA了2次。
-
02009-07-23 08:49:16@
编译通过...
├ 测试数据 01:答案正确... 0ms
├ 测试数据 02:答案正确... 0ms
├ 测试数据 03:答案正确... 0ms
├ 测试数据 04:答案正确... 0ms
├ 测试数据 05:答案正确... 0ms
├ 测试数据 06:答案正确... 0ms
├ 测试数据 07:答案正确... 0ms
├ 测试数据 08:答案正确... 41ms
├ 测试数据 09:答案正确... 103ms
├ 测试数据 10:答案正确... 134ms
---|---|---|---|---|---|---|---|-
Accepted 有效得分:100 有效耗时:278ms
第一次。。。输出了调试的东东
膜拜CJF神牛。 -
02009-07-22 18:16:08@
..顽强的用了 AC 。。
-
02009-07-21 19:53:11@
SPFA用SLF就能0ms了!(注意要写
-
02009-06-29 02:01:33@
编译通过...
├ 测试数据 01:答案正确... 0ms
├ 测试数据 02:答案正确... 0ms
├ 测试数据 03:答案正确... 0ms
├ 测试数据 04:答案正确... 0ms
├ 测试数据 05:答案正确... 0ms
├ 测试数据 06:答案正确... 0ms
├ 测试数据 07:答案正确... 0ms
├ 测试数据 08:答案正确... 0ms
├ 测试数据 09:答案正确... 0ms
├ 测试数据 10:答案正确... 0ms
---|---|---|---|---|---|---|---|-
Accepted 有效得分:100 有效耗时:0msSLF 王道 !!!
膜拜 CJF 天牛 !!!
最开始跑出来的一直是零,后来发现在添加两个国家之间的那个弧我把费用打成了零。。。最近没状态。。。 -
02009-06-20 08:15:18@
感谢陈健飞神牛的题解!
将点的费用设为一个很小的数,这方法太神了!
第100人AC,庆祝一下!
-
02009-06-11 21:59:36@
zkw费用流就是快……
0msAC了! -
02009-04-13 16:22:01@
├ 测试数据 01:答案正确... 0ms
├ 测试数据 02:答案正确... 0ms
├ 测试数据 03:答案正确... 0ms
├ 测试数据 04:答案正确... 0ms
├ 测试数据 05:答案正确... 0ms
├ 测试数据 06:答案正确... 0ms
├ 测试数据 07:答案正确... 0ms
├ 测试数据 08:答案正确... 72ms
├ 测试数据 09:答案正确... 134ms
├ 测试数据 10:答案正确... 134ms -
02009-04-03 20:57:52@
编译通过...
├ 测试数据 01:答案正确... 0ms
├ 测试数据 02:答案正确... 0ms
├ 测试数据 03:答案正确... 0ms
├ 测试数据 04:答案正确... 0ms
├ 测试数据 05:答案正确... 0ms
├ 测试数据 06:答案正确... 0ms
├ 测试数据 07:答案正确... 0ms
├ 测试数据 08:答案正确... 166ms
├ 测试数据 09:答案正确... 275ms
├ 测试数据 10:答案正确... 338ms
---|---|---|---|---|---|---|---|-
Accepted 有效得分:100 有效耗时:779ms
我太菜了,现在才会费用流,不过A了就好 -
02009-03-26 19:06:21@
没加优化前
Accepted 有效得分:100 有效耗时:776ms
加了一个小优化后
Accepted 有效得分:100 有效耗时:0ms
强烈在spfa时队首队尾两端插入,效率明摆着而且只不过加了一行
-
02009-03-12 20:54:05@
注意。。每个节点访问的次数是固定的。且一定有M个人出去访问
-
02009-02-17 21:58:46@
太好了!!!
一遍编完没有调试就过了!!!