/ Vijos / 题库 / Domino /

题解

66 条题解

  • 0
    @ 2007-10-03 16:35:21

    .....My God

  • 0
    @ 2007-08-17 22:36:13

    可不可以解释得再清楚一些

    偶还是看不懂啊

  • 0
    @ 2007-08-02 20:37:27

    这个题竟然难度为1,这可是多米诺棋盘覆盖问题哈,属于组合数学的问题,不是很容易的,当然纯粹“拿来主义”是很简单地

  • 0
    @ 2007-07-31 19:23:37

    难得一次AC~~纪念一下

    写起也还容易,代码90几行

  • 0
    @ 2007-07-22 09:21:01

    编译通过...

    ├ 测试数据 01:答案正确... 0ms

    ├ 测试数据 02:答案正确... 0ms

    ├ 测试数据 03:答案正确... 0ms

    ├ 测试数据 04:答案正确... 0ms

    ├ 测试数据 05:答案正确... 0ms

    ├ 测试数据 06:答案正确... 0ms

    ├ 测试数据 07:答案正确... 0ms

    ├ 测试数据 08:答案正确... 0ms

    ├ 测试数据 09:答案正确... 0ms

    ├ 测试数据 10:答案正确... 0ms

    ├ 测试数据 11:答案正确... 0ms

    ├ 测试数据 12:答案正确... 0ms

    ├ 测试数据 13:答案正确... 0ms

    ├ 测试数据 14:答案正确... 0ms

    ├ 测试数据 15:答案正确... 0ms

    ├ 测试数据 16:答案正确... 0ms

    ├ 测试数据 17:答案正确... 0ms

    ├ 测试数据 18:答案正确... 0ms

    ├ 测试数据 19:答案正确... 0ms

    ├ 测试数据 20:答案正确... 0ms

    ├ 测试数据 21:答案正确... 0ms

    ├ 测试数据 22:答案正确... 0ms

    ├ 测试数据 23:答案正确... 0ms

    ├ 测试数据 24:答案正确... 0ms

    ├ 测试数据 25:答案正确... 0ms

    ---|---|---|---|---|---|---|---|-

    Accepted 有效得分:100 有效耗时:0ms

    状态压缩的dp+矩阵乘法

    因为每个格子不是被覆盖就是没被覆盖,状态只有0 1两种,m

  • 0
    @ 2007-06-23 15:46:19

    不知道怎么做诶

  • 0
    @ 2007-04-19 22:12:09

    怎么dp啊?

  • 0
    @ 2007-04-12 21:37:40

    ├ 测试数据 01:答案正确... 0ms

    ├ 测试数据 02:答案正确... 0ms

    ├ 测试数据 03:答案正确... 0ms

    ├ 测试数据 04:答案正确... 0ms

    ├ 测试数据 05:答案正确... 0ms

    ├ 测试数据 06:答案正确... 0ms

    ├ 测试数据 07:答案正确... 0ms

    ├ 测试数据 08:答案正确... 0ms

    ├ 测试数据 09:答案正确... 0ms

    ├ 测试数据 10:答案正确... 0ms

    ├ 测试数据 11:运行超时...

    ├ 测试数据 12:运行超时...

    ├ 测试数据 13:答案正确... 0ms

    ├ 测试数据 14:答案正确... 0ms

    ├ 测试数据 15:答案正确... 0ms

    ├ 测试数据 16:答案正确... 0ms

    ├ 测试数据 17:答案正确... 0ms

    ├ 测试数据 18:答案正确... 244ms

    ├ 测试数据 19:答案正确... 572ms

    ├ 测试数据 20:运行超时...

    ├ 测试数据 21:运行超时...

    ├ 测试数据 22:运行超时...

    ├ 测试数据 23:运行超时...

    ├ 测试数据 24:运行超时...

    ├ 测试数据 25:运行超时...

    直接朴素DP的结果。。

    如何优化?我对矩阵的应用不是很熟悉,除了基本的k3logn经典优化

  • 0
    @ 2006-10-28 17:15:59

    和斐波那切有关。。(递推公式)

  • 0
    @ 2006-10-27 19:47:47

    压缩DP。二进制转十存储~ 麻烦呦~~ 8写了

  • 0
    @ 2006-10-25 23:06:04

    好苦啊,用矩阵乘写了100多行

  • 0
    @ 2006-10-15 18:06:17

    楼下的楼下的楼下,能否提供该牛人的公式

  • 0
    @ 2006-09-22 21:15:01

    我的垃圾方法....

    用矩阵乘的~

  • 0
    @ 2006-08-19 12:47:25

    这题不是什么藐视n的大小的题目吗?另还有一种极端的做法就是推公式,JSOI就有人这么写的。。。

  • -1
    @ 2017-07-29 15:55:58

    好老的题啊!下面的题解还有十年前的2333


    AC代码:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    int n, m, p, M;
    const int WIDTH = 34;
    struct matrix {
        ll g[WIDTH][WIDTH];
        matrix(){
            memset(g, 0, sizeof(g));
        }
        matrix(int x){
            memset(g, 0, sizeof(g));
            for(int i = 0; i < M; i++)
                g[i][i] = 1;
        }
        matrix operator * (matrix b){
            matrix c;
            for(int k = 0; k < M; k++)
                for(int i = 0; i < M; i++)
                    for(int j = 0; j < M; j++)
                        c.g[i][j] = (c.g[i][j] + g[i][k] * b.g[k][j] % p) % p;
            return c;
        }
    } mp;
    matrix qpow(matrix a, int x){
        matrix ans(1);
        while(x){
            if(x & 1) ans = ans * a;
            a = a * a;
            x >>= 1; 
        }
        return ans;
    }
    // Matrix67 的神奇位运算我找不到了 -_-|||
    //自己编了一个十分naive的暴力判断,也能用 
    bool getbit(int num, int x){
        return num & (1 << x);
    }
    void init(){
        for(int i = 0; i < M; i++)
            for(int j = 0; j < M; j++){
                int ok = 1, rem = j;
                for(int k = 0; k < m; k++){
                    if(!getbit(i, k)){//如果母串该位为0 
                        if(!getbit(rem, k)) ok = 0;//则子串该位必为1 
                        else rem -= (1 << k);//去掉这些横放造成的突起 
                    }
                }//去掉横放突起后,剩下的都是竖放的 
                int cnt = 0;
                for(int k = 0; k < m; k++){
                    if(getbit(rem, k)) cnt++;//数数竖放挨在一起的有多少 
                    if(!getbit(rem, k)){
                        if(cnt & 1) ok = 0;
                        cnt = 0;
                    }
                }
                if(cnt & 1) ok = 0;
                if(ok) mp.g[i][j] = 1;
            }
    }
    int main(){
        scanf("%d%d%d", &n, &m, &p);
        M = 1 << m ;
        init();
        mp = qpow(mp, n);
        printf("%lld\n", mp.g[M - 1][M - 1]);
        return 0;
    }
    
  • -1
    @ 2017-07-01 11:16:53

    纯DP方法,可以76分

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int ag[8]={0,3,6,12,15,24,27,30}; 
    int f[10000010][32];
    int n,m,p,w[10025][2],cnt=0;
    bool pass(int a,int b){
        for(int i=0;i<8;++i) if((a&b)==ag[i]) return 1;
        return 0;
    }
    int main(){
        scanf("%d%d%d",&n,&m,&p);
        for(int i=0;i<(1<<m);++i)
            for(int j=0;j<(1<<m);++j)
                if((~i&j)==(~i&((1<<m)-1))&&pass(i,j)) w[cnt][0]=i,w[cnt++][1]=j;
        f[0][(1<<m)-1]=1;
        for(int i=1;i<=n;++i)
            for(int j=0;j<cnt;++j)
                f[i][w[j][1]]=(f[i][w[j][1]]+f[i-1][w[j][0]])%p;
        printf("%d\n",f[n][(1<<m)-1]%p);
    }
    
  • -1
    @ 2016-11-14 17:07:49

    ac 50留念!膜拜matrix67神牛

  • -1
    @ 2013-09-22 21:10:32

    #include <stdio.h>
    int main (){
    printf ("0");
    return 0;
    }测试数据 #0: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #1: Accepted, time = 0 ms, mem = 540 KiB, score = 4

    测试数据 #2: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #3: WrongAnswer, time = 0 ms, mem = 532 KiB, score = 0

    测试数据 #4: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #5: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #6: WrongAnswer, time = 0 ms, mem = 532 KiB, score = 0

    测试数据 #7: Accepted, time = 15 ms, mem = 540 KiB, score = 4

    测试数据 #8: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #9: WrongAnswer, time = 15 ms, mem = 540 KiB, score = 0

    测试数据 #10: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #11: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #12: WrongAnswer, time = 0 ms, mem = 544 KiB, score = 0

    测试数据 #13: WrongAnswer, time = 0 ms, mem = 544 KiB, score = 0

    测试数据 #14: WrongAnswer, time = 0 ms, mem = 544 KiB, score = 0

    测试数据 #15: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #16: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #17: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #18: WrongAnswer, time = 0 ms, mem = 532 KiB, score = 0

    测试数据 #19: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #20: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #21: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #22: WrongAnswer, time = 0 ms, mem = 532 KiB, score = 0

    测试数据 #23: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #24: WrongAnswer, time = 15 ms, mem = 540 KiB, score = 0

    WrongAnswer, time = 45 ms, mem = 544 KiB, score = 8

  • -1
    @ 2013-09-22 21:08:11

    #include <stdio.h>
    int main (){
    printf ("1");
    return 0;
    }测试数据 #0: Accepted, time = 0 ms, mem = 540 KiB, score = 4

    测试数据 #1: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #2: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #3: WrongAnswer, time = 15 ms, mem = 540 KiB, score = 0

    测试数据 #4: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #5: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #6: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #7: WrongAnswer, time = 15 ms, mem = 540 KiB, score = 0

    测试数据 #8: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #9: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #10: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #11: WrongAnswer, time = 15 ms, mem = 536 KiB, score = 0

    测试数据 #12: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #13: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #14: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #15: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #16: WrongAnswer, time = 15 ms, mem = 540 KiB, score = 0

    测试数据 #17: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #18: WrongAnswer, time = 0 ms, mem = 532 KiB, score = 0

    测试数据 #19: WrongAnswer, time = 0 ms, mem = 540 KiB, score = 0

    测试数据 #20: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #21: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #22: WrongAnswer, time = 3 ms, mem = 540 KiB, score = 0

    测试数据 #23: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    测试数据 #24: WrongAnswer, time = 0 ms, mem = 536 KiB, score = 0

    WrongAnswer, time = 63 ms, mem = 540 KiB, score = 4

  • -1
    @ 2013-08-13 10:49:21

    555555555555555555555

信息

ID
1194
难度
5
分类
动态规划 | 线性代数 | 矩阵乘法 点击显示
标签
(无)
递交数
788
已通过
268
通过率
34%
被复制
4
上传者