题解

138 条题解

  • 4
    @ 2014-11-03 21:53:35

    P1200ganggang的烦恼
    Accepted

    记录信息

    评测状态 Accepted
    题目 P1200 ganggang的烦恼
    递交时间 2014-11-03 21:53:04
    代码语言 C++
    评测机 上海红茶馆
    消耗时间 0 ms
    消耗内存 540 KiB
    评测时间 2014-11-03 21:53:05

    评测结果

    编译成功

    测试数据 #0: Accepted, time = 0 ms, mem = 540 KiB, score = 25

    测试数据 #1: Accepted, time = 0 ms, mem = 540 KiB, score = 25

    测试数据 #2: Accepted, time = 0 ms, mem = 540 KiB, score = 25

    测试数据 #3: Accepted, time = 0 ms, mem = 540 KiB, score = 25

    Accepted, time = 0 ms, mem = 540 KiB, score = 100

    代码

    #include <stdio.h>

    char ans[1000 + 2][7] = { "1F" , "1F" , "2T" , "6F" , "6F" , "3T" , "9F" , "9F" , "9F" , "27F" , "27F" , "36F" , "27F" , "27F" , "45F" , "45F" , "63F" , "63F" , "54F" , "45F" , "54F" , "63F" , "72F" , "99F" , "81F" , "72F" , "81F" , "108F" , "90F" , "126F" , "117F" , "135F" , "108F" , "144F" , "144F" , "144F" , "171F" , "153F" , "108F" , "189F" , "189F" , "144F" , "189F" , "180F" , "216F" , "207F" , "216F" , "225F" , "234F" , "225F" , "216F" , "198F" , "279F" , "279F" , "261F" , "279F" , "333F" , "270F" , "288F" , "324F" , "288F" , "315F" , "306F" , "333F" , "324F" , "351F" , "351F" , "369F" , "342F" , "351F" , "459F" , "423F" , "432F" , "315F" , "378F" , "432F" , "441F" , "432F" , "423F" , "441F" , "450F" , "486F" , "477F" , "486F" , "477F" , "414F" , "495F" , "495F" , "531F" , "549F" , "585F" , "594F" , "540F" , "513F" , "549F" , "585F" , "648F" , "648F" , "639F" , "648F" , "648F" , "639F" , "630F" , "621F" , "702F" , "648F" , "639F" , "594F" , "666F" , "657F" , "657F" , "693F" , "765F" , "666F" , "648F" , "648F" , "729F" , "738F" , "756F" , "774F" , "783F" , "774F" , "738F" , "765F" , "747F" , "855F" , "801F" , "873F" , "828F" , "819F" , "864F" , "927F" , "873F" , "846F" , "846F" , "819F" , "864F" , "927F" , "954F" , "981F" , "954F" , "963F" , "1026F" , "936F" , "1017F" , "972F" , "1017F" , "954F" , "1008F" , "1107F" , "1053F" , "990F" , "990F" , "999F" , "1062F" , "1053F" , "1098F" , "1125F" , "1134F" , "1089F" , "1107F" , "1134F" , "1125F" , "1134F" , "1098F" , "1116F" , "1188F" , "1089F" , "1188F" , "1188F" , "1179F" , "1242F" , "1215F" , "1206F" , "1215F" , "1233F" , "1215F" , "1278F" , "1368F" , "1260F" , "1305F" , "1323F" , "1287F" , "1314F" , "1323F" , "1260F" , "1296F" , "1377F" , "1422F" , "1386F" , "1350F" , "1422F" , "1404F" , "1458F" , "1395F" , "1413F" , "1422F" , "1512F" , "1395F" , "1413F" , "1404F" , "1350F" , "1404F" , "1476F" , "1494F" , "1530F" , "1584F" , "1647F" , "1602F" , "1530F" , "1548F" , "1512F" , "1593F" , "1530F" , "1674F" , "1674F" , "1575F" , "1638F" , "1665F" , "1575F" , "1701F" , "1692F" , "1665F" , "1701F" , "1773F" , "1728F" , "1728F" , "1656F" , "1638F" , "1701F" , "1746F" , "1665F" , "1809F" , "1728F" , "1872F" , "1746F" , "1755F" , "1890F" , "1818F" , "1818F" , "1926F" , "1890F" , "1971F" , "1980F" , "1863F" , "1944F" , "1827F" , "1872F" , "1935F" , "1881F" , "1953F" , "1926F" , "1917F" , "2025F" , "1926F" , "1899F" , "1989F" , "1953F" , "1863F" , "1971F" , "1962F" , "2079F" , "2088F" , "2061F" , "1953F" , "2106F" , "2124F" , "2043F" , "2133F" , "2106F" , "2151F" , "2169F" , "2133F" , "1980F" , "2088F" , "2187F" , "2043F" , "2313F" , "2367F" , "2223F" , "2241F" , "2367F" , "2340F" , "2349F" , "2241F" , "2304F" , "2313F" , "2385F" , "2322F" , "2385F" , "2313F" , "2331F" , "2412F" , "2385F" , "2358F" , "2511F" , "2484F" , "2394F" , "2376F" , "2448F" , "2466F" , "2376F" , "2511F" , "2493F" , "2394F" , "2529F" , "2457F" , "2466F" , "2430F" , "2412F" , "2646F" , "2556F" , "2565F" , "2502F" , "2601F" , "2556F" , "2637F" , "2574F" , "2655F" , "2583F" , "2700F" , "2628F" , "2808F" , "2637F" , "2610F" , "2700F" , "2727F" , "2682F" , "2718F" , "2754F" , "2655F" , "2772F" , "2853F" , "2862F" , "2835F" , "2790F" , "2907F" , "2817F" , "2925F" , "2817F" , "2754F" , "2961F" , "2835F" , "2844F" , "2844F" , "2916F" , "2808F" , "2844F" , "2970F" , "2934F" , "2952F" , "2862F" , "3123F" , "2844F" , "2925F" , "3069F" , "2952F" , "2979F" , "2979F" , "3087F" , "3024F" , "2997F" , "3060F" , "3060F" , "3087F" , "3114F" , "3024F" , "3033F" , "3132F" , "3204F" , "3186F" , "3213F" , "3195F" , "3258F" , "3186F" , "3159F" , "3249F" , "3186F" , "3132F" , "3312F" , "3240F" , "3195F" , "3204F" , "3357F" , "3339F" , "3375F" , "3366F" , "3204F" , "3348F" , "3366F" , "3321F" , "3384F" , "3474F" , "3312F" , "3348F" , "3312F" , "3582F" , "3429F" , "3528F" , "3627F" , "3402F" , "3339F" , "3366F" , "3483F" , "3474F" , "3600F" , "3528F" , "3609F" , "3465F" , "3483F" , "3447F" , "3573F" , "3672F" , "3600F" , "3654F" , "3708F" , "3618F" , "3726F" , "3708F" , "3564F" , "3672F" , "3807F" , "3690F" , "3627F" , "3636F" , "3780F" , "3618F" , "3753F" , "3636F" , "3762F" , "3807F" , "3798F" , "3897F" , "3771F" , "3834F" , "3879F" , "3780F" , "3780F" , "4059F" , "3807F" , "3726F" , "3852F" , "3861F" , "3753F" , "4041F" , "3969F" , "3825F" , "3978F" , "4023F" , "4185F" , "3825F" , "3888F" , "4059F" , "4203F" , "4140F" , "4059F" , "4176F" , "4176F" , "4149F" , "3969F" , "4077F" , "4131F" , "4158F" , "4221F" , "4041F" , "4194F" , "4275F" , "4140F" , "4257F" , "4140F" , "4275F" , "4338F" , "4284F" , "4266F" , "4419F" , "4428F" , "4383F" , "4194F" , "4356F" , "4365F" , "4356F" , "4059F" , "4320F" , "4266F" , "4302F" , "4383F" , "4329F" , "4536F" , "4509F" , "4419F" , "4284F" , "4410F" , "4608F" , "4302F" , "4455F" , "4464F" , "4374F" , "4644F" , "4527F" , "4608F" , "4599F" , "4446F" , "4518F" , "4536F" , "4671F" , "4644F" , "4527F" , "4581F" , "4671F" , "4707F" , "4644F" , "4554F" , "4635F" , "4761F" , "4563F" , "4716F" , "4698F" , "4779F" , "4860F" , "4752F" , "4761F" , "4680F" , "4698F" , "4842F" , "4815F" , "4860F" , "4761F" , "4968F" , "4986F" , "4941F" , "4977F" , "4950F" , "4923F" , "4896F" , "4932F" , "4851F" , "4977F" , "4797F" , "4986F" , "4869F" , "5202F" , "5067F" , "5085F" , "4941F" , "4968F" , "5076F" , "5112F" , "5274F" , "5121F" , "4923F" , "5139F" , "4860F" , "5337F" , "4950F" , "5067F" , "5193F" , "5409F" , "5166F" , "5247F" , "5346F" , "5139F" , "5274F" , "5202F" , "5373F" , "5265F" , "5391F" , "5301F" , "5337F" , "5472F" , "5319F" , "5265F" , "5427F" , "5400F" , "5427F" , "5364F" , "5346F" , "5337F" , "5454F" , "5265F" , "5400F" , "5373F" , "5499F" , "5562F" , "5382F" , "5427F" , "5292F" , "5706F" , "5562F" , "5499F" , "5526F" , "5562F" , "5652F" , "5562F" , "5679F" , "5328F" , "5616F" , "5724F" , "5787F" , "5697F" , "5634F" , "5715F" , "5634F" , "5760F" , "5787F" , "5589F" , "5742F" , "5661F" , "5499F" , "5823F" , "5931F" , "5823F" , "5877F" , "5823F" , "5787F" , "5832F" , "5841F" , "5850F" , "5886F" , "5778F" , "5841F" , "5922F" , "6039F" , "5859F" , "6003F" , "5931F" , "5958F" , "6120F" , "5895F" , "5904F" , "5904F" , "6057F" , "6012F" , "5931F" , "5967F" , "6147F" , "5859F" , "5859F" , "6237F" , "6210F" , "6336F" , "6057F" , "6291F" , "6021F" , "6291F" , "6021F" , "6219F" , "6156F" , "6282F" , "6012F" , "6372F" , "6300F" , "6399F" , "6372F" , "6282F" , "6246F" , "6291F" , "6318F" , "6219F" , "6453F" , "6192F" , "6516F" , "6408F" , "6444F" , "6147F" , "6417F" , "6381F" , "6327F" , "6498F" , "6462F" , "6453F" , "6363F" , "6489F" , "6417F" , "6480F" , "6615F" , "6453F" , "6561F" , "6831F" , "6444F" , "6444F" , "6444F" , "6417F" , "6534F" , "6687F" , "6786F" , "6651F" , "6687F" , "6615F" , "6777F" , "6795F" , "6876F" , "6966F" , "6957F" , "6669F" , "6822F" , "6831F" , "6696F" , "6741F" , "6957F" , "6885F" , "6723F" , "6777F" , "6741F" , "6849F" , "6840F" , "6678F" , "6849F" , "6831F" , "6957F" , "7065F" , "7056F" , "7092F" , "6966F" , "6876F" , "7083F" , "6912F" , "7191F" , "7101F" , "7020F" , "7191F" , "7164F" , "6957F" , "7110F" , "7047F" , "7092F" , "6957F" , "7083F" , "7182F" , "7407F" , "7065F" , "7254F" , "7137F" , "7254F" , "7155F" , "7155F" , "7128F" , "7515F" , "7317F" , "7029F" , "7461F" , "7263F" , "7218F" , "7425F" , "7317F" , "7326F" , "7362F" , "7641F" , "7452F" , "7263F" , "7380F" , "7416F" , "7263F" , "7398F" , "7524F" , "7533F" , "7308F" , "7524F" , "7452F" , "7488F" , "7434F" , "7461F" , "7488F" , "7353F" , "7731F" , "7470F" , "7641F" , "7461F" , "7272F" , "7542F" , "7569F" , "7713F" , "7704F" , "7767F" , "7551F" , "7776F" , "7596F" , "7722F" , "7875F" , "7659F" , "7686F" , "7659F" , "7677F" , "7776F" , "7686F" , "7983F" , "7857F" , "7938F" , "8001F" , "7839F" , "7965F" , "7929F" , "8109F" , "7812F" , "7938F" , "8001F" , "8001F" , "8091F" , "8100F" , "7884F" , "8001F" , "7929F" , "7965F" , "7947F" , "8127F" , "7947F" , "7965F" , "7812F" , "8028F" , "8217F" , "8208F" , "8181F" , "8280F" , "8028F" , "8037F" , "8298F" , "8172F" , "8424F" , "8127F" , "8235F" , "8001F" , "8163F" , "8307F" , "8496F" , "8181F" , "8172F" , "8415F" , "8343F" , "8424F" , "8217F" , "8361F" , "8397F" , "8433F" , "8307F" , "8649F" , "8352F" , "8370F" , "8514F" , "8514F" , "8082F" , "8568F" , "8316F" , "8370F" , "8478F" , "8649F" , "8658F" , "8541F" , "8550F" , "8388F" , "8622F" , "8586F" , "8586F" , "8595F" , "8649F" , "8550F" , "8694F" , "8685F" , "8694F" , "8676F" , "8685F" , "8793F" , "8667F" , "8802F" , "8757F" , "8901F" , "8937F" , "8694F" , "8946F" , "8820F" , "8829F" , "9000F" , "9009F" , "9009F" , "8955F" , "8811F" , "8883F" , "8928F" , "8928F" , "8982F" , "8757F" , "8901F" , "9090F" , "8973F" , "9117F" , "8946F" , "8838F" , "9099F" , "9189F" , "9099F" , "9072F" , "8811F" , "9054F" , "9054F" , "8865F" , "9063F" , "9126F" , "9189F" , "9135F" , "9045F" , "9216F" , "9090F" , "9324F" , "9162F" , "9324F" , "9081F" , "9045F" , "9414F" , "9153F" , "9369F" , "9333F" , "9486F" , "9126F" , "9081F" , "9477F" , "9198F" , "9468F" , "9504F" , "9603F" , "9360F" , "9396F" , "9477F" , "9423F" , "9522F" , "9450F" , "9702F" , "9432F" , "9594F" , "9558F" , "9630F" , "9549F" , "9477F" , "9675F" , "9549F" , "9702F" , "9540F" , "9738F" , "9666F" , "9729F" , "9801F" , "9657F" , "9810F" , "9729F" , "9513F" , "9612F" , "9774F" , "9684F" , "9702F" , "9675F" , "9504F" , "9792F" , "9684F" , "9639F" , "10035F" , "9855F" , "9774F" , "9783F" , "9990F" , "9999F" , "9954F" , "9945F" , "9981F" , "9954F" , "9999F" , "9900F" , "10071F" , "10125F" , "10080F" , "9828F" , "10116F" , "10143F" , "10089F" , "10134F" , "9711F" , "10053F" , "10314F" , "10035F" , "10278F" , "9990F" , "10053F" , "10179F" , "10413F" , "10134F" , "10341F" , "10458F" , "9990F" , "10296F" , "10053F" , "10296F" , "10206F" , "10287F" , "10332F" , "10467F" , "10287F" , "10296F" , "10251F" , "10584F" , "10395F" , "10233F" , "10368F" , "10287F" , "10539F" , "10539F" };
    int n;

    int main()
    {
    scanf( "%d" , &n );
    printf( "%s\n" , ans[n] );
    return 0;
    }

    打表王道!

  • 2
    @ 2017-05-08 12:42:19
    /*
    水题啊
    就是个高精度阶乘Orz
    因为n>=3时,n!中必定带有因子3,
    所以各位数加起来还是有因子3,一定不是素数,只要特判n=2即可
    这个结论很奇妙了
    所以我们只要求高精度阶乘
    然后累加各位上的数就好咯~
    QWQ
    表示我太弱了高精度竟然都卡了
    */
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    
    const int mod=10000;
    struct bign
    {
        int a[mod],len;
        bign()
        {
            memset(a,0,sizeof(a));
            a[1]=1;
            len=1;
        }
        bign operator *(const int &b)
        {
            bign c;
            c.len=999;
            c.a[1]=0;
            for(int i=1;i<=len;i++)
            {
                c.a[i]+=b*a[i];
                if(c.a[i]>=mod)
                {
                    c.a[i+1]+=(c.a[i]/mod);
                    c.a[i]%=mod;
                }
            }
            while(c.a[c.len]==0)
                c.len--;
            return c;
        }
    };
    bign a;
    int n;
    int ans;
    
    void out(bign x)
    {
        for(int i=1;i<=x.len;i++)
        {
            int k=x.a[i];
            while(k)
            {
                ans+=k%10;
                k/=10;
            }
        }
        cout<<ans;
    }
    
    int main()
    {
        cin>>n;
        for(int i=2;i<=n;i++)
            a=a*i;
        out(a);
        if(n>2)
            cout<<'F';
        else
            cout<<'T';
        return 0;
    }
         
    
  • 1
    @ 2018-06-11 03:48:09

    //**java直接用Biginteger高精度搞定**

    import java.math.BigInteger;
    import java.util.Scanner;

    /**
    *
    * @author zhibinchen
    */
    public class Main {

    public static void main(String[] args) {

    Scanner r = new Scanner(System.in);
    int n;
    BigInteger factorial = new BigInteger("1");
    BigInteger ii;
    String temp;
    char[] separated;
    int result = 0;
    String prime = "T";

    n = r.nextInt();

    if (n != 0) {
    for (int i = 1; i <= n; i++) {
    ii = new BigInteger(String.valueOf(i));
    factorial = ii.multiply(factorial);
    }
    } else {
    factorial = BigInteger.valueOf(0);
    }

    temp = factorial.toString();
    separated = temp.toCharArray();

    for (int i = 0; i < separated.length; i++) {
    result += Integer.valueOf(String.valueOf(separated[i]));
    }

    //judge if it is a prime number
    /*
    if (result != 1 && result != 0) {
    for (int i = 2; i <= Math.sqrt(result); ++i) {
    if (result % 2 != 0) {
    if (i % 2 == 0) {
    ++i;
    }
    }
    if (result % i == 0) {
    prime = "F";
    break;
    }
    }
    } else {
    prime = "F";
    }*/
    if (n!=2){
    prime = "F";
    }
    System.out.println(result + prime);
    //System.out.println(factorial);
    }

    }

  • 1
    @ 2017-03-12 15:54:03

    //直接暴力枚举即可,数据太水,试了一下数据如果是10000只能卡秒过
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<cstdlib>

    using namespace std;
    const int MAX=25000;
    int n,i,j,k,a[MAX],ans,len=0;
    bool flag;

    void gjdcf(int a[],int x)
    {
    int j,s=0,z=0;
    for (j=0;j<len;j++)
    {
    s=a[j]*x+z;
    a[j]=s%10;
    z=s/10;
    }
    while (z>0)
    {
    a[len++]=z%10;
    z/=10;

    }
    }

    int main()
    {
    freopen("input.txt","r",stdin);
    freopen("output.txt","w",stdout);
    cin>>n;
    len=1; a[0]=1;
    for (i=2;i<=n;i++)
    {
    gjdcf(a,i);

    }
    for (i=0;i<len;i++) ans+=a[i];
    cout<<ans;
    k=int(sqrt(ans*1.0));
    for (j=2;j<=k;j++)
    if (ans%j==0) {cout<<"F"<<endl;flag=true;break;}
    if (!flag) cout<<"T"<<endl;
    fclose(stdin); fclose(stdout);
    return 0;

    }

  • 0
    @ 2017-11-26 16:33:32

    /*Tokgo*/
    /*
    计算直接高精度没什么好说的
    判断素数有一个有趣的规律
    各个数位相加是3的倍数的数是三的倍数
    当n>=3时n!是3的倍数
    因此一定不是素数
    另外n==2的时候再特判一下就行了
    /
    #include <iostream>
    #include <algorithm>
    #include <vector>
    using namespace std;
    int n;
    vector <int> a;
    int js;
    void AND(int e){
    for(int i=0;i<a.size();++i){
    a[i]
    =e;
    }
    for(int i=0;i<a.size();++i){
    if(a[i]>9){
    if(i==a.size()-1)
    a.push_back(a[i]/10);
    else
    a[i+1]+=(a[i]/10);
    a[i]%=10;
    }
    }
    }
    int main() {
    cin>>n;
    a.push_back(1);
    for(int i=2;i<=n;++i){
    AND(i);
    }
    for(int i=a.size()-1;i>-1;--i){
    js+=a[i];
    }
    cout<<js;
    if(n>2) cout<<"F";
    else if(n==2){
    if(js&1){
    cout<<"F";
    }
    else
    cout<<"T";
    }
    else cout<<"F";
    return 0;
    }

  • 0
    @ 2017-02-03 16:51:43

    暴力即可 only 480B
    c++
    #include<stdio.h>
    int n,a[11111],top=1,sum;
    int gjc(int x)
    {
    int i;
    for(i=1;i<=top;i++)
    a[i]*=x;
    for(i=1;i<=top+10;i++)
    {
    if(a[i]>9)
    {
    a[i+1]+=a[i]/10;
    a[i]%=10;
    }
    if(a[i]!=0)
    top=i;
    }
    }
    int main()
    {
    int i;
    a[1]=1;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    {
    gjc(i);
    }
    for(i=top;i>=1;i--)
    sum+=a[i];
    printf("%d",sum);
    for(i=2;i<sum;i++)
    if(sum%i==0)
    {
    printf("F\n");
    return 0;
    }
    printf("T\n");
    return 0;
    }

  • 0
    @ 2016-12-23 00:38:36

    一遍水过。。。直接套用模板走一发。。以前不是做过大整数相乘吗?然后搬到这里就好了
    ```c++
    #include <cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    using namespace std;
    int multi(char a, char b)
    {
    return (a - '0') * (b - '0');
    }

    void strMulti(char *a, char *b, char *c)
    {
    // 最好对a,b和c的合法性进行判断

    int lenA = strlen(a);
    int lenB = strlen(b);
    int maxLen = lenA + lenB;
    int *p = new int[maxLen];
    memset(p, 0, maxLen * sizeof(int)); // 千万要注意不要写成memset(p, 0, maxLen);

    int i, j;
    for(j = lenB - 1; j >= 0; j--)
    {
    for(i = lenA - 1; i >= 0; i--)
    {
    p[j + i + 1] += multi(b[j], a[i]);
    }
    }

    // 处理进位操作
    for(i = maxLen - 1; i >= 1; i--)
    {
    p[i - 1] += p[i] / 10;
    p[i] = p[i] % 10;
    }

    int *s = p;

    // m位正整数和n位正整数相乘,结果的位数必然是(m+n-1)位或者(m+n)位
    if(0 == p[0])
    {
    p++;
    }

    int *pTmp = NULL;
    for(pTmp = p; pTmp < s + maxLen; pTmp++)
    {
    *c++ = *pTmp + '0';
    }

    *c = '\0';

    delete s;
    }

    void factorial(int n, char *str)
    {
    int i;
    *str = '1';
    *(str + 1) = '\0';
    char b[5000];
    for(i = 1; i <= n; i++)
    {
    itoa(i, b, 10);
    strMulti(str, b, str);
    }
    }
    int panduan(int x)
    {
    int m = (int)(sqrt(x) + 0.5);
    for(int i=2; i <= m; i++)
    {
    if(x % i == 0) return 0;
    }
    return 1;
    }
    int main()
    {
    char str[5000];
    int n,sum=0;
    scanf("%d",&n);
    factorial(n, str);
    int len = strlen(str);
    for(int i=0; i < len; i++)
    sum += str[i]-'0';
    printf("%d",sum);
    if( panduan(sum) == 1) printf("T");
    else printf("F");

    return 0;
    }

  • 0
    @ 2016-12-03 15:18:00

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define LL long long
    void mult(int a[],int x){
    int i,k=0,t;
    for(i=1;i<=a[0]||k;i++){
    t=a[i]*x+k;
    k=t/10000;
    a[i]=t%10000;
    }
    a[0]=i-1;
    }
    bool isprime(LL x){
    if(x<=1) return false;
    for(int i=2;i<x;i++)
    if(x%i==0)return false;
    return true;
    }
    LL getnum(int x){
    LL re=0;
    do{
    re+= x % 10;
    x/= 10;
    }while(x);
    return re;
    }
    int main(){
    int n,i;
    LL result=0ULL;
    int re[100000]={1,1};//
    cin>>n;
    for(i=1;i<=n;i++){
    mult(re,i);
    }
    for(i=re[0];i>=1;i--){
    result+=getnum(re[i]);

    }
    cout<<result;
    if(isprime(result))cout<<"T";
    else
    cout<<"F";
    return 0;
    }

  • 0
    @ 2016-11-04 12:48:49
    import java.math.BigInteger;
    import java.util.Scanner;
    
    public class Main {
        public static boolean Judge(int n){
            if(n <= 1)  return false;
            if(n == 2)  return true;
            if(n % 2 == 0)  return false;
            for(int i = 3;i * i <= n;i ++){
                if(n % i == 0)  return false;
            }
            return true;
        }
        public static void main(String[] args) {
            Scanner Cin = new Scanner(System.in);
            int n = Cin.nextInt();
            if(n == 0){
                System.out.println("0F");
            }else{
                BigInteger re = BigInteger.ONE;
                for(int i = 1;i <= n;i ++){
                    re = re.multiply(BigInteger.valueOf(i));
                }
                String tem = re.toString();
    //          System.out.println(tem);
                char[] str = tem.toCharArray();
                int ans = 0;
                for(int i = 0;i < str.length;i ++){
                    ans += (str[i] - '0');
                }
                System.out.printf("%d",ans);
                if(Judge(ans))  System.out.println("T");
                else            System.out.println("F");
            }
        }
    }
    

    仿佛在逗我,第一次tle,再交一次AC。。。

  • 0
    @ 2016-09-07 19:12:57

    #include<stdio.h>
    int a[100000];
    int y;
    int main()
    {
    int n;
    scanf("%d",&n);
    if(n==0)
    {
    printf("1T");
    }
    a[1]=1;
    int len=1;

    for(int i=2;i<=n;i++)
    {
    int x;
    int tmp=0;
    for(int j=1;j<=len;j++)
    {
    a[j]=i*a[j]+tmp;
    tmp=a[j]/10;
    a[j]=a[j]%10;
    }
    while(tmp>0)
    {
    a[++len]=tmp%10;
    tmp/=10;
    }
    }
    int y=0;
    for(int i=1;i<=len;i++)
    {
    y+=a[i];
    }
    printf("%d",y);
    int tmp_=0;
    if(y==1)
    {
    printf("F");
    return 0;
    }
    if(y==2)
    {
    printf("T");
    return 0;
    }
    if(y==0)
    {
    printf("F");
    return 0;
    }
    for(int i=2;i*i<=y;i++)
    {
    if(y%i==0)
    {
    printf("F");
    tmp_++;
    break;
    }
    }
    if(tmp_==0)
    printf("T");
    return 0;
    }
    样例过不了,但是测评满分

  • 0
    @ 2016-08-23 03:13:14

    #include"stdio.h"
    #include"iostream"
    #include"cstring"
    using namespace std;
    typedef long long ll;
    ll len;
    bool is_prime(ll x)
    {
    for(int i=2;i*i<=x;i++)
    if(x%i==0) return false;
    return true;
    }
    ll f(ll a[],ll x)
    {
    for(int i=0;i<len;i++)
    a[i]*=x;
    for(int i=0;i<len;i++)
    if(a[i]>=10)
    {
    a[i+1]+=a[i]/10;
    a[i]%=10;
    }
    if(a[len]) len++;
    while(a[len-1]>=10)
    {
    a[len]+=a[len-1]/10;
    a[len-1]%=10;
    len++;
    }
    }
    ll fuck(ll x)
    {
    int ans=0;
    while(x)
    {
    ans+=x%10;
    x/=10;
    }
    return ans;
    }
    int main()
    {
    int n;
    cin>>n;
    if(n==0) cout<<0<<"F"<<endl;
    else
    {
    ll a[100000];
    memset(a,0,sizeof(a));
    int i;
    a[0]=1;len=1;
    for(i=1;i<=n;i++)
    f(a,i);
    ll ans=0;
    for(i=len-1;i>=0;i--)
    if(a[i]>=10)ans+=fuck(a[i]);
    else ans+=a[i];
    cout<<ans;
    if(ans%3!=0) cout<<"T"<<endl;
    else cout<<"F"<<endl;
    /*
    double fuck=1;
    for(i=1;i<=n;i++)
    fuck*=i;
    cout<<fuck<<endl;

    for(i=len-1;i>=0;i--)
    cout<<a[i];
    cout<<endl;
    */
    }
    return 0;
    }

  • 0
    @ 2016-07-21 21:19:18

    首先,你需要高精度 //或是自带高精度的Python、Java
    另外,因为n>=3时,n!中必定带有因子3,所以各位数加起来还是有因子3,一定不是素数,只要特判n=2即可
    ```python
    from functools import *
    from math import *
    from string import *

    n=int(input())
    mul=1
    i=1
    while i<=n:
    mul=mul*i
    i=i+1

    s=str(mul)
    sum = 0
    for c in s:
    sum = sum + int(c)

    if n == 2:
    print (str(sum)+'T')
    else:
    print (str(sum)+'F')

  • 0
    @ 2016-07-16 19:51:01

    #include<iostream>
    #include<cstdio>
    #include<cstring>

    using namespace std;
    #define LL long long

    void mult(int a[],int x){//高精度乘法
    int i,k=0,t;

    for(i=1;i<=a[0]||k;i++){
    t=a[i]*x+k;
    k=t/10000;//万进制 压缩
    a[i]=t%10000;
    }
    a[0]=i-1;
    }

    bool isprime(LL x){
    if(x<=1) return false;

    for(int i=2;i<x;i++)
    if(x%i==0)return false;
    return true;//判断是否是素数
    }

    LL getnum(int x){
    LL re=0;

    do{
    re+= x % 10;//各个位数相加
    x/= 10;
    }while(x);
    return re;
    }
    int main(){
    int n,i;
    LL result=0ULL;
    int re[100000]={1,1};

    cin>>n;
    for(i=1;i<=n;i++){
    mult(re,i);
    }
    for(i=re[0];i>=1;i--){
    result+=getnum(re[i]);

    }
    cout<<result;
    if(isprime(result))cout<<"T";
    else
    cout<<"F";
    return 0;
    }

  • 0
    @ 2016-04-02 09:33:39

    #include<cstdio>
    #include<cstring>
    using namespace std;
    int num[100005];
    bool judge(int x)
    {
    if(n<=1)
    return false;
    for(int i=2;i*i<=x;i++)
    {
    if(x%i==0)

    return false;
    }
    return true;
    }
    int main()
    {
    int n;
    scanf("%d",&n);
    num[0]=1;
    int len=1;
    for(int e=2;e<=n;e++)
    {
    int x;
    int jin=0;
    for(int i=0;i<len;i++)
    {
    x=(e*num[i]+jin);
    jin=x/10;
    num[i]=x%10;
    }

    while(jin!=0)
    {
    num[len++]=jin%10;
    jin/=10;
    }

    }
    int sum=0;
    for(int i=0;i<len;i++)
    {
    sum+=num[i];
    }
    printf("%d%c\n",sum,judge(sum)?'T':'F');

    return 0;
    }

  • 0
    @ 2016-03-22 07:30:33

    编译成功

    测试数据 #0: Accepted, time = 0 ms, mem = 948 KiB, score = 25

    测试数据 #1: Accepted, time = 0 ms, mem = 948 KiB, score = 25

    测试数据 #2: Accepted, time = 0 ms, mem = 948 KiB, score = 25

    测试数据 #3: Accepted, time = 0 ms, mem = 952 KiB, score = 25

    Accepted, time = 0 ms, mem = 952 KiB, score = 100

  • 0
    @ 2015-11-03 10:09:12

    Program P1200;

    type wbd=array[1..50000]of longint;

    var k,n,y:longint;a:wbd;bo:boolean;

    procedure fuck(n:longint);
    var x,i:longint;
    begin
    x:=0;
    for i:=1 to k do begin
    a[i]:=a[i]*n+x;
    x:=a[i] div 10;
    a[i]:=a[i] mod 10;
    end;
    while x>0 do begin
    inc(k);
    a[k]:=x mod 10;
    x:=x div 10;
    end;
    end;

    Procedure wq;
    var i:longint;
    begin
    k:=1;a[1]:=1;
    for i:=1 to n do fuck(i);
    y:=0;
    for i:=1 to k do inc(y,a[i]);
    end;

    function check(t:longint):boolean;
    var i:longint;
    begin
    if (t=2) or (t=3) then exit(true);
    for i:=2 to trunc(sqrt(t)) do
    if t mod i=0 then exit(false);
    exit(true);
    end;

    begin
    readln(n);
    if (n=0) or (n=1) then begin
    writeln(n,'F'); halt; end;
    wq;
    write(y);
    bo:=check(y);
    if bo then writeln('T')
    else writeln('F');
    end.

  • 0
    @ 2015-07-31 15:19:12

    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;

    int num[1000];

    int len(){
    for(int i=999; i>=1; i--)
    if(num[i] != 0)
    return i;
    }

    int main()
    {
    memset(num, 0, sizeof(num));
    int n;
    cin>>n;
    num[1] = 1;
    for(int i=2; i<=n; i++){
    int k=len();
    for(int j=1; j<=k; j++){
    num[j] *= i;

    for(int i=1; i<=len(); i++){
    num[i+1] += num[i]/10;
    num[i] %= 10;

    }

    }
    int ans=0;
    for(int i=1; i<=len(); i++)
    ans += num[i];
    cout<<ans;
    for(int i=2; i<=sqrt(ans); i++)
    if(num[i] % i ==0){
    cout<<"F";
    system("pause");
    return 0;
    }
    cout<<"T";
    system("pause");
    return 0;
    }
    高精度

  • 0
    @ 2015-07-14 10:37:38

    一遍水过
    #include <iostream>
    #include <math.h>
    using namespace std;
    int n,jie[100001],l,s;
    int main()
    {
    cin >> n;
    jie[1]=1;
    l=1;
    for (int i=2;i<=n;i++)
    {
    for (int j=1;j<=l;j++)
    jie[j]*=i;
    for (int j=1;j<=l;j++)
    if(jie[j]>9)
    {
    jie[j+1]+=jie[j]/10;
    jie[j]%=10;
    if(j==l) l++;
    }
    }
    for (int i=l;i>=1;i--)
    s+=jie[i];
    cout << s;
    bool f=true;
    for (int i=2;i<=sqrt(s);i++)
    if(s%i==0)
    {
    f=false;
    break;
    }
    if(f) cout << 'T' << endl;
    else cout << 'F' << endl;
    return 0;
    }

  • 0
    @ 2015-03-07 21:26:35

    #include<stdio.h>
    #include<stdlib.h>
    #include<math.h>
    #include<string.h>
    #include<ctype.h>
    #include<time.h>
    int p[1001];
    int r[5001];
    void mul(int *r,int m)
    {
    int i,jw=0;
    for(i=0;i<5000;i++)
    {
    r[i]=r[i]*m;
    r[i]=r[i]+jw;
    jw=r[i]/10;
    r[i]=r[i]%10;
    }
    }
    int is(int pr)
    {
    if(pr==1)
    {
    return 0;
    }
    else
    {
    if(pr==2)return 1;
    int i;
    for(i=2;i<=sqrt(pr);i++)
    {
    if(pr%i==0)
    {
    return 0;
    break;
    }
    }
    return 1;
    }
    }
    int sum(int *a)
    {
    int i,ans=0;
    for(i=4999;i>=0;i--)
    {
    if(a[i]!=0)break;
    }
    if(i==-1)ans=0;
    else
    {
    for(;i>=0;i--)
    {
    ans+=a[i];
    // printf("%d",a[i]);
    }
    //printf("\n");
    }
    return ans;
    }

    int main()
    {
    int j,n,i,k=0,jw,pr;
    char c;
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
    p[i]=i+1;
    }
    r[0]=1;
    for(i=0;i<n;i++)
    {
    mul(r,p[i]);
    }
    pr=sum(r);
    if(is(pr)==1)
    {
    c='T';
    }
    else
    {
    c='F';
    }
    //print(r);

    printf("%d%c\n",pr,c);
    //system("pause");
    return 0;
    }
    AC 112 纪念

  • 0
    @ 2014-12-29 18:01:24

    type lll=longint;
    arr=array[0..1000] of lll; var i,j,k,Base,n:lll;
    st:string;
    res,a,x:arr;
    function F(a,b,n:longint):longint;
    var s:longint;
    begin
    s:=1;
    while b>0 do
    begin
    if odd(b) then
    s:=(s*a) mod n;
    b:=b shr 1;
    a:=(a*a) mod n;
    end;
    exit(s);
    end;
    function P(n,s:longint):boolean;
    var a,i:longint;
    begin
    if n<=1 then exit(false);
    randomize;
    p:=true;
    for i:=1 to s do
    begin
    a:=random(n-1)+1;
    if F(a,n-1,n)<>1 then exit(false);
    end;
    end;
    procedure C(v:longint);
    var rem,o:lll;
    begin
    fillchar(x,sizeof(x),0);
    rem:=0;
    o:=1;
    while (o<=res[0])or(rem>0) do
    begin
    if o<=res[0] then inc(rem,res[o]*v);
    x[o]:=rem mod 10;
    rem:=rem div 10;
    inc(o);
    end;
    x[0]:=o-1;
    while (x[0]>0)and(x[x[0]]=0) do dec(x[0]);
    res:=x;
    end;
    Begin
    readln(st);
    res[0]:=1;
    res[1]:=1;
    val(st,k);
    for i:=2 to k do
    C(i);
    n:=0;
    for i:=1 to res[0] do inc(n,res[i]);
    write(n);
    if P(n,2) then write('T')
    else
    write('F');
    end.

信息

ID
1200
难度
4
分类
数论 | 素数判定 点击显示
标签
(无)
递交数
3394
已通过
1349
通过率
40%
被复制
12
上传者