题解

17 条题解

  • 1
    @ 2024-01-31 14:59:18

    打表大法好!

    #include<bits/stdc++.h>
    #define ull unsigned long long
    #define ll long long
    #define fo(i,l,r) for(int i=l;i<=r;i++)
    #define fd(i,r,l) for(int i=r;i>=l;i--)
    using namespace std;
    string f[25][25]=
    {{"1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1","1"},
    {"1","2","2","2","2","2","2","2","2","2","2","2","2","2","2","2","2","2","2","2"},
    {"1","2","0","4","0","8","0","16","0","32","0","64","0","128","0","256","0","512","0","1024"},
    {"1","2","4","12","28","74","184","472","1192","3034","7692","19540","49588","125906","319600","811376","2059728","5228914","13274132","33698012"},
    {"1","2","0","28","0","308","0","3392","0","37368","0","411664","0","4535088","0","49960704","0","550391072","0","6063371968"},
    {"1","2","8","74","308","2144","10640","65350","350588","2048056","11337384","64927604","363943696","2067834700","11648952596","65978136324","372421332936","2106698788256","11900935030208","67287082416580"},
    {"1","2","0","184","0","10640","0","602768","0","34132984","0","1933312268","0","109512147164","0","6203392139840","0","351396413556636","0","19905156313629048"},
    {"1","2","16","472","3392","65350","602768","9277152","98966276","1363456408","15674553804","204566478858","2441465049952","31026134376016","377240578987836","4731428340594028","58060619271410108","723499756992159556","8918793365733841068","110782338511967959110"},
    {"1","2","0","1192","0","350588","0","98966276","0","27833987564","0","7827575547072","0","2201662329939728","0","619313040592944136","0","174213900542085378064","0","49007159454365867061516"},
    {"1","2","32","3034","37368","2048056","34132984","1363456408","27833987564","934520913216","21509595448248","656152951318066","16182626220743584","467954797441974568","12004085992032768720","336871945813501053908","8836237773975508683540","243826792152688437860090","6476705240872799497024216","177029033285148340652006844"}};
    signed main(){
        int n,m;cin>>n>>m,cout<<f[n-1][m-1];
        return 0;
    }
    
  • 0
    @ 2018-08-06 15:14:41

    参考陈丹琦的论文:https://cs.stanford.edu/~danqi/misc/dynamic-programming.pdf

    个人喜欢叫这类DP为拼图DP,本质上就是把整个图看成一块块碎片拼起来的,我们DP的过程就是枚举应该放哪块碎片的过程。
    至于轮廓线(逐格枚举)应该是一种优化方法,只保存有用的信息。

    因为我现学现用,代码大改动了好几次,踩了不少坑。
    一开始直接把格子种类当状态 状态数 6^10级别(其实因为还要记录连通性,所以比这个级别更大,但是我一开始没想到)
    改成括号匹配后 3^10级别

    1.换行的时候编码要偏移
    2.决策的时候要复原
    3.弄清楚答案是哪些状态的数值累加起来的
    4.hash数组开大
    5.不直接枚举,改成bfs扩展,减少无效状态
    6.高精度

    #include <bits/stdc++.h>
    using namespace std;
    #define FOR(i,n) for (int i=1;i<=n;i++)
    #define REP(i,a,b) for (int i=a;i<=b;i++)
    #define pb push_back
    #define mp make_pair
    #define ll long long
    const int N=100000+10;
    const int inf=0x3f3f3f3f;
    const ll mod=7654321;
    const double PI=3.1415926;
    const double eps=1e-8;
    
    const int SIZE=177147+10;
    int n,m;
    int a[21];
    int p[21][2];
    int tmp[21];
    int ha[SIZE];
    int now;
    int r,c;
    ll state[2][SIZE];
    ll num[2];
    struct bignum {
        int len;
        int a[51];
        bignum() {
            len=0;
            memset(a,0,sizeof a);
        }
        void operator=(bignum x) {
            len=x.len;
            FOR(i,len) a[i]=x.a[i];
        }
        void operator=(ll x) {
            memset(a,0,sizeof a);
            while (x) {
                a[++len]=x%10;
                x/=10;
            }
            len=max(len,1);
        }
        bignum operator+(bignum x) {
            bignum res;
            res.len=max(len,x.len);
            FOR(i,res.len) {
                res.a[i]+=a[i]+x.a[i];
                res.a[i+1]+=res.a[i]/10;
                res.a[i]%=10;
            }
            if (res.a[res.len+1]) ++res.len;
            return res;
        }
        void operator+=(bignum x) {
            (*this)=(*this)+x;
        }
    };
    bignum f[2][SIZE];
    bignum ans;
    void decode(ll x) {
        memset(a,0,sizeof a);
        int cnt=0;
        while (x) {
            a[++cnt]=x%3;
            x/=3;
        }
        stack<int> s;
        memset(p,0,sizeof p);
        
        FOR(i,n+1) {
            if (a[i]==1) {
                s.push(i);
            } else if (a[i]==2) {
                p[i][0]=s.top();
                p[s.top()][1]=i;
                s.pop();
            }
        }
    }
    ll encode() {
        if (c==n) for (int i=n+1;i>=1;i--) a[i]=a[i-1];
        ll res=0;
        for (int i=n+1;i>=1;i--) res=res*3+a[i];
        return res;
    }
    void add(int now,ll code,bignum val) {
        ll tmp=code;
        code%=SIZE;
        while (ha[code]!=-1&&state[now][ha[code]]!=code) {
            ++code;
            code%=SIZE;
        }
        if (ha[code]==-1) {
            ha[code]=++num[now];
            state[now][ha[code]]=tmp;
            f[now][ha[code]]=val;
        } else {
            f[now][ha[code]]+=val;
        }
    }
    void print(bignum x) {
        for (int i=x.len;i>=1;i--) cout<<x.a[i];
        cout<<endl;
    }
    int main() {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        cin>>m>>n;
        if (n==1||m==1) {
            cout<<1<<endl;
            return 0;
        }
        if (n>m) swap(m,n);
        ans=0;
        num[1]=1,ha[0]=1,state[1][1]=0,f[1][1]=1;
        for (r=1;r<=m;r++) for(c=1;c<=n;c++) {
            now^=1;
            memset(f[now^1],0,sizeof f[now^1]);
            memset(ha,-1,sizeof ha);
            memset(state[now^1],0,sizeof state[now^1]);
            num[now^1]=0;
            FOR(i,num[now]) {
                decode(state[now][i]);
                
                /*
                cout<<r<<" "<<c<<endl;
                //cout<<f[now][i]<<endl;
                FOR(j,n+1) cout<<a[j]<<" ";
                cout<<endl;
                */
                
                int left=a[c],up=a[c+1];
                ll code;
                
                if (left&&!up) {
                    if (c!=n) {
                        memcpy(tmp+1,a+1,(n+1)*sizeof(int));
                        a[c+1]=left,a[c]=0;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                        memcpy(a+1,tmp+1,(n+1)*sizeof(int));
                    }
                    if (r!=m) {
                        memcpy(tmp+1,a+1,(n+1)*sizeof(int));
                        a[c+1]=0,a[c]=left;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                        memcpy(a+1,tmp+1,(n+1)*sizeof(int));
                    }
                }
                if (left&&up) {
                    if (a[c]!=a[c+1]) {
                        // (1,2) or (2,1)
                        if (a[c]==1&&a[c+1]==2&&!(r==m&&c==n)) continue;
                        a[c]=a[c+1]=0;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                    } else if (a[c]==1) {
                        // a[c]=a[c+1]=1
                        int x=p[c][1],y=p[c+1][1];
                        a[c]=a[c+1]=0;
                        a[y]=1,a[x]=2;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                    } else {
                        // a[c]=a[c+1]=2
                        int x=p[c][0],y=p[c+1][0];
                        a[c]=a[c+1]=0;
                        a[y]=1,a[x]=2;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                    }           
                }
                if (!left&&!up) {
                    if (r!=m&&c!=n) {
                        a[c]=1,a[c+1]=2;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                    }
                }
                if (!left&&up) {
                    if (r!=m) {
                        memcpy(tmp+1,a+1,(n+1)*sizeof(int));
                        a[c]=up,a[c+1]=0;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                        memcpy(a+1,tmp+1,(n+1)*sizeof(int));
                    }
                    if (c!=n) {
                        memcpy(tmp+1,a+1,(n+1)*sizeof(int));
                        a[c]=0,a[c+1]=up;
                        code=encode();
                        if (code!=-1) add(now^1,code,f[now][i]);
                        memcpy(a+1,tmp+1,(n+1)*sizeof(int));
                    }
                }
            }
            if (r==m&&c==n) {
                FOR(j,num[now^1]) {
                    ans=ans+f[now^1][j];
                }
            }
        }
        ans=ans+ans;
        print(ans);
        return 0;
    }
    
    • @ 2019-08-16 16:13:46

      超时是什么鬼???

  • 0
    @ 2007-05-29 15:06:34

    貌似是压位DP+高精度...

    哪天写写看.....

  • -1
    @ 2015-05-08 20:40:49

    网上抄的代码,自己翻译,排版了一下,给大家学习。
    主要方法是状态压缩dp,然后就是高精度,最后加一点特判。
    主要,n或m为1时路径只有1条,而不是0条,
    虽然是最短,但没说不可以重复走一个点。
    但n=3,m=3这种情况不知道怎么搞,还好好像没这个点……
    恩,这是他的题解
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int BIT = 177147+10;
    int n,m;
    int scan()
    {
    char cc = ' ';
    int re = 0,fh = 1;
    while(cc == ' ' || cc == '\r' || cc == '\n')
    cc = getchar();
    if(cc=='+')
    {
    cc=getchar();
    fh=1;
    }
    if(cc=='-')
    {
    cc=getchar();
    fh=-1;
    }
    while('0'<=cc&&cc<='9')
    {
    re = re * 10 + cc - '0';
    cc = getchar();
    }
    return re * fh;
    }

    struct state{
    int i,d;
    state(){}
    state(int ii,int dd):i(ii),d(dd)
    {
    }
    };

    queue<state>dui;

    const int LEN = 10+1;
    const int L = 10000;

    struct Big{
    int d[LEN],len;
    Big()
    {
    memset(d,0,sizeof(d));
    len=1;
    }

    Big operator = (int a)
    {
    if(!a)
    {
    *this = Big();
    return *this;
    }
    for(len = 0; a != 0 ; a /= L)
    d[++len] = a % L;
    }

    void print()
    {
    printf("%d",d[len]);
    for(int i=len-1;i;i--)
    printf("%04d",d[i]);
    }
    };
    typedef Big BIG;

    Big operator + (Big &A,Big &B)
    {
    Big C;
    C.len = max(A.len,B.len) + 1;
    for(int i = 1; i <= C.len; ++ i)
    {
    C.d[i] += A.d[i] + B.d[i];
    if(C.d[i] >= L)
    {
    C.d[i+1] = C.d[i] / L;
    C.d[i] %= L;
    }
    }
    while(C.len > 1 && C.d[C.len] == 0)
    C.len--;
    return C;
    }

    BIG ans,f[2][BIT];
    short v[2][BIT];

    int pos(int x,int y)
    {
    return (y - 1) * m + x - 1;
    }

    void list(int x,short a[])
    {
    for(int i=1;i<=m+1;i++)
    a[i] = 0;
    for(int i = 1; x != 0; ++ i,x = x / 3)
    a[i] = x % 3;
    }

    int zip(short a[],int x,int val1,int val2){
    int re=0;
    for(int i = m + 1; i != 0 ; -- i)
    if(i == x)
    re = re * 3 + val1;
    else
    if(i == x + 1)
    re = re * 3 + val2;
    else
    re = re * 3 + a[i];
    return re;
    }

    short lin[12];

    void pipei(int x,short a[],short type)
    {
    int i,j,p1 = 0,p2 = 0;
    if(type==1)
    {
    for(j=0,i=x+2;i<=m+1;i++)
    {
    if(a[i]==2)
    j++;
    if(a[i]==1)
    j--;
    if(j > 0 && !p1)
    {
    p1=i;
    j--;
    }
    if(j > 0 && p1)
    {
    p2=i;
    break;
    }
    }
    }
    else
    {
    for(j=0,i=x-1;i;i--)
    {
    if(a[i]==1)
    j++;
    if(a[i]==2)
    j--;
    if(j > 0 && !p2)
    {
    p2=i;
    j--;
    }
    if(j > 0 && p2)
    {

    p1=i;
    break;
    }
    }
    }
    a[p1] = 1;
    a[p2] = 2;
    }

    void update(int i,int zt,BIG &val,short upans = 0)
    {
    i++;
    int i2 = i % 2;
    if(!upans)
    {
    if(v[i2][zt] != i)
    {
    f[i2][zt] = 0;
    v[i2][zt] = i;
    dui.push(state(i,zt));
    }
    f[i2][zt] = f[i2][zt]+val;
    }
    else
    ans = ans + val;
    }

    short map[21][21];

    bool lerror(short a[])
    {
    int i,j;
    for(i=1,j=0;i<=m+1;i++)
    {
    if(a[i]==1)
    j++;
    if(a[i]==2)
    j--;
    if(j<0)
    return 1;
    }
    return j != 0;
    }

    int main(){
    int i,j,end;
    m=scan();
    n=scan();
    end = pos(m,n);
    dui.push(state(0,0));
    f[0][0] = 1;
    v[0][0] = 1;
    for(i=1;i<=m;i++)
    for(j=1;j<=n;j++)
    map[i][j]=1;
    while(!dui.empty())
    {
    state now = dui.front();
    dui.pop();
    int x,y,tmp;
    i = now.i;
    BIG & last = f[i%2][now.d];
    if(i % m == 0)
    now.d *= 3;
    x = i % m + 1;
    y = i / m + 1;
    list(now.d,lin);
    if(lin[x] == 1 && lin[x+1] == 2)
    {
    if(i == end)
    update(i,0,last,1);
    }else
    if(lin[x] == 2 && lin[x+1] == 1)
    {
    tmp = zip(lin,x,0,0);
    update(i,tmp,last);
    }
    else
    if(lin[x] == 0 && lin[x+1] == 0)
    {
    if(map[x][y+1] && map[x+1][y])
    {
    tmp = zip(lin,x,1,2);
    update(i,tmp,last);
    }
    }
    else
    if(lin[x] == 0)
    {
    if(map[x+1][y])
    {
    tmp = zip(lin,x,0,lin[x+1]);
    update(i,tmp,last);
    }
    if(map[x][y+1])
    {
    tmp = zip(lin,x,lin[x+1],0);
    update(i,tmp,last);
    }
    }
    else
    if(lin[x+1] == 0)
    {
    if(map[x+1][y])
    {
    tmp = zip(lin,x,0,lin[x]);
    update(i,tmp,last);
    }
    if(map[x][y+1])
    {
    tmp = zip(lin,x,lin[x],0);
    update(i,tmp,last);
    }
    }
    else
    if(lin[x] == lin[x+1])
    {
    pipei(x,lin,lin[x]);
    tmp = zip(lin,x,0,0);
    update(i,tmp,last);
    }
    }
    ans = ans + ans;
    if(ans.len == 1 && ans.d[1] == 0)
    ans = 1;
    ans.print();
    return 0;
    }

  • -2
    @ 2013-07-05 23:03:01

    1个月后再写- -等我涅磐了

  • -2
    @ 2012-07-13 14:42:06

    typedef pair int128

  • -2
    @ 2010-07-16 11:10:16

    名字是---|基于连通性状态压缩的动态规划问题

  • -2
    @ 2009-08-27 12:52:10

    oRZ lx和lxx的神牛!!!!!!!

    (一开始把m和n交换一下,不然状态表示要用long long……)

  • -2
    @ 2009-04-01 21:24:10

    Formula 1答案*2

  • -2
    @ 2008-12-31 00:26:38

    使用了连通性状态压缩DP。

    但是单单设f会严重爆空间。

    可以考虑使用滚动一维的实现方式,设f[0..1,k]。

    空间O(2*3^m) 解决了空间问题。

  • -2
    @ 2008-11-10 22:10:50

    水题

  • -2
    @ 2008-10-20 02:54:07

    CDQ《连通性状态压缩DP》

  • -2
    @ 2008-10-15 20:50:24

    看到数据这么小就有一种挂表的冲动........

  • -2
    @ 2008-07-25 13:05:38

    编译通过...

    ├ 测试数据 01:答案正确... 0ms

    ├ 测试数据 02:答案正确... 0ms

    ├ 测试数据 03:答案正确... 0ms

    ├ 测试数据 04:答案正确... 0ms

    ├ 测试数据 05:答案正确... 0ms

    ├ 测试数据 06:答案正确... 0ms

    ├ 测试数据 07:答案正确... 0ms

    ├ 测试数据 08:答案正确... 0ms

    ├ 测试数据 09:答案正确... 0ms

    ├ 测试数据 10:答案正确... 9ms

    ---|---|---|---|---|---|---|---|-

    Accepted 有效得分:100 有效耗时:9ms

    呜呼!n=1或m=1要特判!

    状态压缩dp+高精度,速度还是很快的啊!

  • -2
    @ 2008-07-12 22:48:17

    基于连通性原理的状态压缩动态规划

    可以看看noi2008冬令营cdq的论文

  • -2
    @ 2007-10-02 19:42:05

    这题为何没有人写??

  • -4
    @ 2013-10-04 17:56:56

    比较弱,写了个搜索30分。。后面全超,不过也挺欣慰了。。
    begin
    if (t=n*m)
    then if ((x=1)and(y=2))or((x=2)and(y=1))
    then begin
    s:=s+1;exit;
    end
    else exit;
    for i:=1 to 4 do begin
    q:=x+han[i];
    p:=y+lie[i];
    if (q>0)and(q<=n)and(p>0)and(p<=m)
    then if b[q,p]=false then
    begin
    b[q,p]:=true;
    so(q,p,t+1);
    b[q,p]:=false;
    end;
    end;
    end;

  • 1

信息

ID
1110
难度
7
分类
动态规划 | 状态压缩DP高精度 点击显示
标签
递交数
521
已通过
120
通过率
23%
被复制
7
上传者