题解

3 条题解

  • 1
    @ 2023-07-12 17:40:06
    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN = 40005;
    const double eps = 1e-6;
    template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
    template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
    template <typename T> void read(T &x) {
        x = 0; int f = 1;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
        for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
        x *= f;
    }
    template <typename T> void write(T x) {
        if (x < 0) x = -x, putchar('-');
        if (x > 9) write(x / 10);
        putchar(x % 10 + '0');
    }
    template <typename T> void writeln(T x) {
        write(x);
        puts("");
    }
    struct point {double x, y; };
    struct segment {point a, b; };
    point operator + (point a, point b) {return (point) {a.x + b.x, a.y + b.y}; }
    point operator - (point a, point b) {return (point) {a.x - b.x, a.y - b.y}; }
    double operator * (point a, point b) {return a.x * b.y - a.y * b.x; }
    point operator * (point a, double b) {return (point) {a.x * b, a.y * b}; }
    point operator / (point a, double b) {return (point) {a.x / b, a.y / b}; }
    double moo(point a) {return sqrt(a.x * a.x + a.y * a.y); }
    double dot(point a, point b) {return a.x * b.x + a.y * b.y; }
    point unit(point a) {return a / moo(a); }
    double gety (segment a, double x) {
        point tmp = a.b - a.a;
        tmp = tmp / (a.b.x - a.a.x) * (x - a.a.x);
        return (a.a + tmp).y;
    }
    struct info {int val; };
    struct changes {double x; int home; bool type; };
    segment a[MAXN], goal;
    point axisx, axisy;
    changes c[MAXN];
    int length, tot; double nowx;
    int upsum; double upx[MAXN], uprate[MAXN];
    int downsum; double downx[MAXN], downrate[MAXN];
    int cnt; double x[MAXN], rate[MAXN], sum[MAXN];
    set <info> st;
    bool cmptype;
    bool operator < (info x, info y) {
        if (cmptype) return gety(a[x.val], nowx) < gety(a[y.val], nowx);
        return gety(a[x.val], nowx) > gety(a[y.val], nowx);
    }
    bool operator < (changes a, changes b) {
        return a.x < b.x;
    }
    point vary(point a) {
        point ans;
        a = a - goal.a;
        ans.x = dot(axisx, a);
        ans.y = dot(axisy, a);
        return ans;
    }
    int main() {
        int T; read(T);
        while (T--) {
            int n; read(n);
            for (int i = 1; i <= n; i++) {
                read(a[i].a.x), read(a[i].a.y);
                read(a[i].b.x), read(a[i].b.y);
            }
            read(goal.a.x), read(goal.a.y);
            read(goal.b.x), read(goal.b.y);
            read(length);
            axisx = unit(goal.b - goal.a);
            axisy = (point) {-axisx.y, axisx.x};
            for (int i = 1; i <= n; i++) {
                a[i].a = vary(a[i].a);
                a[i].b = vary(a[i].b);
                if (a[i].a.x > a[i].b.x) swap(a[i].a, a[i].b);
            }
            //getup
            tot = 0;
            for (int i = 1; i <= n; i++) {
                if (a[i].a.y > 0) {
                    c[++tot] = (changes) {a[i].a.x, i, true};
                    c[++tot] = (changes) {a[i].b.x, i, false};
                }
            }
            sort(c + 1, c + tot + 1);
            cmptype = true;
            st.clear();
            upsum = tot;
            for (int i = 1; i <= tot; i++) {
                nowx = c[i].x;
                upx[i] = c[i].x;
                if (c[i].type) st.insert((info) {c[i].home});
                else st.erase((info) {c[i].home});
                if (st.empty()) uprate[i] = 0;
                else {
                    int tmp = (*st.begin()).val;
                    point tnp = a[tmp].b - a[tmp].a;
                    tnp = tnp / tnp.x; uprate[i] = moo(tnp);
                }
            }
            //getup
            //getdown
            tot = 0;
            for (int i = 1; i <= n; i++) {
                if (a[i].a.y < 0) {
                    c[++tot] = (changes) {a[i].a.x, i, true};
                    c[++tot] = (changes) {a[i].b.x, i, false};
                }
            }
            sort(c + 1, c + tot + 1);
            cmptype = false;
            st.clear();
            downsum = tot;
            for (int i = 1; i <= tot; i++) {
                nowx = c[i].x;
                downx[i] = c[i].x;
                if (c[i].type) st.insert((info) {c[i].home});
                else st.erase((info) {c[i].home});
                if (st.empty()) downrate[i] = 0;
                else {
                    int tmp = (*st.begin()).val;
                    point tnp = a[tmp].b - a[tmp].a;
                    tnp = tnp / tnp.x; downrate[i] = moo(tnp);
                }
            }
            //getdown
            int upnow = 1, downnow = 1;
            double upr = 0, downr = 0; cnt = 0;
            while (upnow <= upsum || downnow <= downsum) {
                if (upnow > upsum) x[++cnt] = downx[downnow];
                else if (downnow > downsum) x[++cnt] = upx[upnow];
                else if (upx[upnow] < downx[downnow]) x[++cnt] = upx[upnow];
                else x[++cnt] = downx[downnow];
                while (upnow <= upsum && abs(x[cnt] - upx[upnow]) < eps) upr = uprate[upnow++];
                while (downnow <= downsum && abs(x[cnt] - downx[downnow]) < eps) downr = downrate[downnow++];
                rate[cnt] = upr + downr;
            }
            for (int i = 2; i <= cnt; i++)
                sum[i] = sum[i - 1] + rate[i - 1] * (x[i] - x[i - 1]);
            double ans = 0;
            for (int i = 1; i <= cnt - 1; i++) {
                double now = 0, tx = x[i] + length;
                if (tx >= x[cnt]) now = sum[cnt] - sum[i];
                else {
                    int l = i, r = cnt;
                    while (l < r) {
                        int mid = (l + r + 1) / 2;
                        if (tx >= x[mid]) l = mid;
                        else r = mid - 1;
                    }
                    now = sum[r] - sum[i] + (tx - x[r]) * rate[r];
                }
                chkmax(ans, now);
            }
            for (int i = cnt; i >= 2; i--) {
                double now = 0, tx = x[i] - length;
                if (tx <= x[1]) now = sum[i];
                else {
                    int l = 1, r = i;
                    while (l < r) {
                        int mid = (l + r) / 2;
                        if (tx <= x[mid]) r = mid;
                        else l = mid + 1;
                    }
                    now = sum[i] - sum[r] + (x[r] - tx) * rate[r - 1];
                }
                chkmax(ans, now);
            }
            printf("%.3f\n", ans);
        }
        return 0;
    }
    
    
  • 1
    @ 2020-12-12 18:33:36
    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN = 40005;
    const double eps = 1e-6;
    template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
    template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
    template <typename T> void read(T &x) {
        x = 0; int f = 1;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
        for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
        x *= f;
    }
    template <typename T> void write(T x) {
        if (x < 0) x = -x, putchar('-');
        if (x > 9) write(x / 10);
        putchar(x % 10 + '0');
    }
    template <typename T> void writeln(T x) {
        write(x);
        puts("");
    }
    struct point {double x, y; };
    struct segment {point a, b; };
    point operator + (point a, point b) {return (point) {a.x + b.x, a.y + b.y}; }
    point operator - (point a, point b) {return (point) {a.x - b.x, a.y - b.y}; }
    double operator * (point a, point b) {return a.x * b.y - a.y * b.x; }
    point operator * (point a, double b) {return (point) {a.x * b, a.y * b}; }
    point operator / (point a, double b) {return (point) {a.x / b, a.y / b}; }
    double moo(point a) {return sqrt(a.x * a.x + a.y * a.y); }
    double dot(point a, point b) {return a.x * b.x + a.y * b.y; }
    point unit(point a) {return a / moo(a); }
    double gety (segment a, double x) {
        point tmp = a.b - a.a;
        tmp = tmp / (a.b.x - a.a.x) * (x - a.a.x);
        return (a.a + tmp).y;
    }
    struct info {int val; };
    struct changes {double x; int home; bool type; };
    segment a[MAXN], goal;
    point axisx, axisy;
    changes c[MAXN];
    int length, tot; double nowx;
    int upsum; double upx[MAXN], uprate[MAXN];
    int downsum; double downx[MAXN], downrate[MAXN];
    int cnt; double x[MAXN], rate[MAXN], sum[MAXN];
    set <info> st;
    bool cmptype;
    bool operator < (info x, info y) {
        if (cmptype) return gety(a[x.val], nowx) < gety(a[y.val], nowx);
        return gety(a[x.val], nowx) > gety(a[y.val], nowx);
    }
    bool operator < (changes a, changes b) {
        return a.x < b.x;
    }
    point vary(point a) {
        point ans;
        a = a - goal.a;
        ans.x = dot(axisx, a);
        ans.y = dot(axisy, a);
        return ans;
    }
    int main() {
        int T; read(T);
        while (T--) {
            int n; read(n);
            for (int i = 1; i <= n; i++) {
                read(a[i].a.x), read(a[i].a.y);
                read(a[i].b.x), read(a[i].b.y);
            }
            read(goal.a.x), read(goal.a.y);
            read(goal.b.x), read(goal.b.y);
            read(length);
            axisx = unit(goal.b - goal.a);
            axisy = (point) {-axisx.y, axisx.x};
            for (int i = 1; i <= n; i++) {
                a[i].a = vary(a[i].a);
                a[i].b = vary(a[i].b);
                if (a[i].a.x > a[i].b.x) swap(a[i].a, a[i].b);
            }
            //getup
            tot = 0;
            for (int i = 1; i <= n; i++) {
                if (a[i].a.y > 0) {
                    c[++tot] = (changes) {a[i].a.x, i, true};
                    c[++tot] = (changes) {a[i].b.x, i, false};
                }
            }
            sort(c + 1, c + tot + 1);
            cmptype = true;
            st.clear();
            upsum = tot;
            for (int i = 1; i <= tot; i++) {
                nowx = c[i].x;
                upx[i] = c[i].x;
                if (c[i].type) st.insert((info) {c[i].home});
                else st.erase((info) {c[i].home});
                if (st.empty()) uprate[i] = 0;
                else {
                    int tmp = (*st.begin()).val;
                    point tnp = a[tmp].b - a[tmp].a;
                    tnp = tnp / tnp.x; uprate[i] = moo(tnp);
                }
            }
            //getup
            //getdown
            tot = 0;
            for (int i = 1; i <= n; i++) {
                if (a[i].a.y < 0) {
                    c[++tot] = (changes) {a[i].a.x, i, true};
                    c[++tot] = (changes) {a[i].b.x, i, false};
                }
            }
            sort(c + 1, c + tot + 1);
            cmptype = false;
            st.clear();
            downsum = tot;
            for (int i = 1; i <= tot; i++) {
                nowx = c[i].x;
                downx[i] = c[i].x;
                if (c[i].type) st.insert((info) {c[i].home});
                else st.erase((info) {c[i].home});
                if (st.empty()) downrate[i] = 0;
                else {
                    int tmp = (*st.begin()).val;
                    point tnp = a[tmp].b - a[tmp].a;
                    tnp = tnp / tnp.x; downrate[i] = moo(tnp);
                }
            }
            //getdown
            int upnow = 1, downnow = 1;
            double upr = 0, downr = 0; cnt = 0;
            while (upnow <= upsum || downnow <= downsum) {
                if (upnow > upsum) x[++cnt] = downx[downnow];
                else if (downnow > downsum) x[++cnt] = upx[upnow];
                else if (upx[upnow] < downx[downnow]) x[++cnt] = upx[upnow];
                else x[++cnt] = downx[downnow];
                while (upnow <= upsum && abs(x[cnt] - upx[upnow]) < eps) upr = uprate[upnow++];
                while (downnow <= downsum && abs(x[cnt] - downx[downnow]) < eps) downr = downrate[downnow++];
                rate[cnt] = upr + downr;
            }
            for (int i = 2; i <= cnt; i++)
                sum[i] = sum[i - 1] + rate[i - 1] * (x[i] - x[i - 1]);
            double ans = 0;
            for (int i = 1; i <= cnt - 1; i++) {
                double now = 0, tx = x[i] + length;
                if (tx >= x[cnt]) now = sum[cnt] - sum[i];
                else {
                    int l = i, r = cnt;
                    while (l < r) {
                        int mid = (l + r + 1) / 2;
                        if (tx >= x[mid]) l = mid;
                        else r = mid - 1;
                    }
                    now = sum[r] - sum[i] + (tx - x[r]) * rate[r];
                }
                chkmax(ans, now);
            }
            for (int i = cnt; i >= 2; i--) {
                double now = 0, tx = x[i] - length;
                if (tx <= x[1]) now = sum[i];
                else {
                    int l = 1, r = i;
                    while (l < r) {
                        int mid = (l + r) / 2;
                        if (tx <= x[mid]) r = mid;
                        else l = mid + 1;
                    }
                    now = sum[i] - sum[r] + (x[r] - tx) * rate[r - 1];
                }
                chkmax(ans, now);
            }
            printf("%.3f\n", ans);
        }
        return 0;
    }
    
  • -1
    @ 2020-12-12 18:26:17

    太BT了吧

  • 1

信息

ID
2046
难度
4
分类
(无)
标签
递交数
29
已通过
14
通过率
48%
被复制
3
上传者