/ Vijos / 题库 / 海拔 /

题解

10 条题解

  • 1
    @ 2016-08-08 11:24:26
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<queue>
    using namespace std;
    const int maxn = 500000 + 5;
    const int INF = 1000000000;
    
    int n, l[10][505][505];
    
    struct Edge {
        int from, to, dist;
        Edge (int from, int to, int dist) : from(from), to(to), dist(dist) {}
    };
    struct HeapNode {
        int d, u;
        HeapNode (int d, int u) : d(d), u(u) {}
        bool operator < (const HeapNode& rhs) const {
            return d > rhs.d;
        }
    };
    
    struct Dijkstra{
        int n, m, d[maxn],G[250001][100],size[maxn];
        vector<Edge> edges;
        bool done[maxn];
        
        void init(int n){
            this -> n = n;
            m = 0;
            memset(d, 0, sizeof(d));
            memset(G, 0, sizeof(G));
            edges.clear();
            memset(size, 0, sizeof(size));
        }
        
        void AddEdge(int from, int to, int dist){
            edges.push_back(Edge{from, to, dist});
            G[from][size[from]++] = m++;
            
        }
        
        void dijkstra(int s){
            priority_queue<HeapNode> Q;
            for(int i = 0; i < n; i++) d[i] = INF;
            d[s] = 0;
            memset(done, 0, sizeof(done));
            Q.push(HeapNode{0,s});
            while(!Q.empty()){
                HeapNode x = Q.top(); Q.pop();
                int u = x.u;
                if(done[u]) continue;
                done[u] = 1;
                for(int i = 0; i < size[u]; i++){
                    Edge& e = edges[G[u][i]];
                    if(d[e.to] > d[u] + e.dist){
                        d[e.to] = d[u] + e.dist;
                        Q.push(HeapNode{d[e.to], e.to});
                    }
                }
            }
        }
    };
    Dijkstra solver;
    
    int cnt;
    int id[550][550];
    int ID (int i, int j) {
        int& x = id[i][j];
        if (x == 0) x = ++cnt;
        return x;
    }
    
    void init(){
        cin >> n;
        for(int k = 0; k < 4; k++)
            for(int i = 0; i < n+(k+1)%2; i++)
                for(int j = 0; j < n+k%2; j++)
                    cin >> l[k][i][j];
        solver.init(n*n+2);
        cnt = 0;
        memset(id, 0, sizeof(id));
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++){
                int idx = ID(i,j);
                if(j > 0) solver.AddEdge(idx,ID(i,j-1),l[3][i][j]);
                if(j < n-1) solver.AddEdge(idx,ID(i,j+1),l[1][i][j+1]);
                if(i > 0) solver.AddEdge(idx,ID(i-1,j),l[0][i][j]);
                if(i < n-1) solver.AddEdge(idx,ID(i+1,j),l[2][i+1][j]);
            }
        for(int i = 0; i < n; i++){
                solver.AddEdge(0,ID(i,0),l[1][i][0]);
                solver.AddEdge(0,ID(n-1,i),l[0][n][i]);
                solver.AddEdge(ID(0,i),cnt+1,l[0][0][i]);
                solver.AddEdge(ID(i,n-1),cnt+1,l[1][i][n]);
        }
        
    
    }
    
    int main(){
        init();
        solver.dijkstra(0);
        cout << solver.d[cnt+1];
        
        return 0;
    }
    
  • 0
    @ 2016-08-08 08:29:16

    2006年ACM北京的一道题,不过那边是一个三角形一个结点
    ```c++
    #include<iostream>
    #include<cstdio>
    #include<queue>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    using namespace std;

    const int INF = 1000000000;
    const int maxsize = 500 + 10;
    const int maxn = 500 * 500 + 100;

    struct Edge {
    int from, to, dist;
    Edge (int from, int to, int dist) : from(from), to(to), dist(dist) {}
    };

    struct HeapNode {
    int d, u;
    HeapNode (int d, int u) : d(d), u(u) {}
    bool operator < (const HeapNode& rhs) const {
    return d > rhs.d;
    }
    };

    struct Dijkstra {
    int n, m;
    vector<int> G[maxn];
    vector<Edge> edges;
    int d[maxn], p[maxn];
    bool done[maxn];

    void init (int n) {
    this->n = n;
    for (int i = 0; i < n; i++) G[i].clear();
    edges.clear();
    }

    void AddEdge (int from, int to, int dist) {
    edges.push_back(Edge(from, to, dist));
    m = edges.size();
    G[from].push_back(m-1);
    }

    void dijkstra (int s) {
    priority_queue<HeapNode> Q;
    memset(done, 0, sizeof(done));
    for (int i = 0; i < n; i++) d[i] = INF;
    d[s] = 0;
    Q.push(HeapNode(d[s], s));
    while (!Q.empty()) {
    HeapNode x = Q.top(); Q.pop();
    int u = x.u;
    if (done[u]) continue;
    done[u] = true;
    for (int i = 0; i < G[u].size(); i++) {
    Edge& e = edges[G[u][i]];
    if (d[e.to] > d[u] + e.dist) {
    d[e.to] = d[u] + e.dist;
    p[e.to] = G[u][i];
    Q.push(HeapNode(d[e.to], e.to));
    }
    }
    }
    }
    };

    Dijkstra solver;

    int cnt;
    int id[maxsize][maxsize];
    int ID (int i, int j) {
    int& x = id[i][j];
    if (x == 0) x = ++cnt;
    return x;
    }

    int n;
    int flow[maxsize][maxsize][4];

    int main ()
    {
    // freopen("in.txt", "r", stdin);
    cin >> n;
    n++;
    solver.init((n-1)*(n-1)+2);
    for (int i = 0; i < n; i++) for (int j = 0; j < n-1; j++) scanf("%d", &flow[i][j][0]); //right
    for (int i = 0; i < n-1; i++) for (int j = 0; j < n; j++) scanf("%d", &flow[i][j][1]); //down
    for (int i = 0; i < n; i++) for (int j = 0; j < n-1; j++) scanf("%d", &flow[i][j][2]); //left
    for (int i = 0; i < n-1; i++) for (int j = 0; j < n; j++) scanf("%d", &flow[i][j][3]); //up

    cnt = 0;
    memset(id, 0, sizeof(id));
    for (int i = 0; i < n-1; i++) for (int j = 0; j < n-1; j++) {
    int idn = ID(i, j);
    if (i > 0) solver.AddEdge(idn, ID(i-1, j), flow[i][j][0]);
    if (i < n-2) solver.AddEdge(idn, ID(i+1, j), flow[i+1][j][2]);

    if (j > 0) solver.AddEdge(idn, ID(i, j-1), flow[i][j][3]);
    if (j < n-2) solver.AddEdge(idn, ID(i, j+1), flow[i][j+1][1]);
    }

    for (int i = 0; i < n-1; i++) {
    solver.AddEdge(0, ID(i, 0), flow[i][0][1]);
    solver.AddEdge(0, ID(n-2, i), flow[n-1][i][0]);

    solver.AddEdge(ID(0, i), cnt+1, flow[0][i][0]);
    solver.AddEdge(ID(i, n-2), cnt+1, flow[i][n-1][1]);
    }

    solver.dijkstra(0);
    cout << solver.d[cnt+1];

    return 0;
    }
    ```

  • 0
    @ 2015-07-01 10:40:56

    AC

    const maxn=2000000;
    type node=record
    from,go,next,w:longint;
    end;
    var i,j,n,cnt,tot,t,x,s,l,r,y:longint;
    head,d,a,p:array[0..maxn] of longint;
    v:array[0..maxn] of boolean;
    e:array[0..maxn] of node;
    num:array[0..600,0..600] of longint;
    procedure insert(x,y,z:longint);
    begin
    inc(tot);
    e[tot].from:=x;e[tot].go:=y;e[tot].w:=z;e[tot].next:=head[x];head[x]:=tot;
    end;
    procedure up(i:longint);
    var t:longint;
    begin
    while (i>1) and (d[a[i]]<d[a[i>>1]]) do
    begin
    t:=a[i];a[i]:=a[i>>1];a[i>>1]:=t;
    p[a[i]]:=i;p[a[i>>1]]:=i>>1;
    i:=i>>1;
    end;
    end;
    procedure down(i:longint);
    var t,j:longint;
    begin
    j:=i<<1;
    if (j<cnt) and (d[a[j+1]]<d[a[j]]) then inc(j);
    while (j<=cnt) and (d[a[j]]<d[a[i]]) do
    begin
    t:=a[i];a[i]:=a[j];a[j]:=t;
    p[a[i]]:=i;p[a[j]]:=j;
    i:=j;j:=j<<1;
    if (j<cnt) and (d[a[j+1]]<d[a[j]]) then inc(j);
    end;
    end;
    procedure dijkstra;
    begin
    fillchar(d,sizeof(d),60);
    fillchar(v,sizeof(v),false);
    d[s]:=0;cnt:=0;
    for i:=0 to n*n+1 do begin inc(cnt);a[cnt]:=i;p[i]:=cnt;up(cnt);end;
    for j:=1 to n*n+1 do
    begin
    x:=a[1];a[1]:=a[cnt];dec(cnt);down(1);
    v[x]:=true;
    i:=head[x];
    while i<>0 do
    begin
    y:=e[i].go;
    if not(v[y]) and (d[x]+e[i].w<d[y]) then
    begin
    d[y]:=d[x]+e[i].w;
    up(p[y]);
    end;
    i:=e[i].next;
    end;
    end;
    end;
    procedure init;
    begin
    readln(n);s:=0;t:=n*n+1;
    for i:=1 to n do for j:=1 to n do num[i,j]:=(i-1)*n+j;
    for i:=1 to n+1 do
    for j:=1 to n do
    begin
    readln(x);
    if i=1 then insert(num[i,j],t,x)
    else if i=n+1 then insert(s,num[i-1,j],x)
    else insert(num[i,j],num[i-1,j],x);
    end;
    for i:=1 to n do
    for j:=1 to n+1 do
    begin
    readln(x);
    if j=1 then insert(s,num[i,j],x)
    else if j=n+1 then insert(num[i,j-1],t,x)
    else insert(num[i,j-1],num[i,j],x);
    end;
    for i:=1 to n+1 do
    for j:=1 to n do
    begin
    readln(x);
    if i=1 then insert(t,num[i,j],x)
    else if i=n+1 then insert(num[i-1,j],s,x)
    else insert(num[i-1,j],num[i,j],x);
    end;
    for i:=1 to n do
    for j:=1 to n+1 do
    begin
    readln(x);
    if j=1 then insert(num[i,j],s,x)
    else if j=n+1 then insert(t,num[i,j-1],x)
    else insert(num[i,j],num[i,j-1],x);
    end;
    end;
    procedure main;
    begin
    dijkstra;
    writeln(d[t]);
    end;
    begin
    init;
    main;
    end.

    • @ 2015-07-01 10:41:45

      hello!

    • @ 2015-07-01 10:42:57

      猪再脑残一次给我试试

  • 0
    @ 2014-06-12 11:06:08

    写spfa其实只要加上 if(dis[p]+side[i].c>dis[T] && dis[T]!=-1) continue;
    这句优化就可以过了(如果常数比较正常的话)

  • 0
    @ 2014-06-03 13:50:17

    Binary Heap的dijkstra果然还是比lll+slf的spfa快一吨的速度

  • 0
    @ 2014-02-16 16:31:07

    编译成功

    测试数据 #0: Accepted, time = 0 ms, mem = 49620 KiB, score = 10
    测试数据 #1: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #2: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #3: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #4: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #5: Accepted, time = 0 ms, mem = 49620 KiB, score = 10
    测试数据 #6: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #7: Accepted, time = 0 ms, mem = 49612 KiB, score = 10
    测试数据 #8: Accepted, time = 452 ms, mem = 49616 KiB, score = 10
    测试数据 #9: Accepted, time = 374 ms, mem = 49620 KiB, score = 10
    Accepted, time = 826 ms, mem = 49620 KiB, score = 100
    代码
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<queue>
    #include<algorithm>

    using namespace std;

    const long long inf=(long long)1<<40;
    const int maxn=500+10;

    struct Tree
    {
    long long dis;
    int tp;
    }tree[maxn*maxn*2];

    struct node
    {
    int to,flow,mf;
    }edge[maxn*maxn*4*2];

    long long dans[maxn*maxn*2];
    int wh[maxn*maxn*2];
    int n,h[maxn*maxn],nex[maxn*maxn*4*2];
    int top=-1,dis[maxn*maxn],tail;
    int tt,ss;

    void tree_swap(Tree& a,Tree& b)
    {
    Tree c=a; a=b; b=c;
    return;
    }

    int rm(int x,int y)
    {
    if(x>n||y<1) return ss;
    if(x<1||y>n) return tt;
    return n*(y-1)+x;
    }

    void addedge(int x,int y,int flow)
    {
    edge[++top]=(node){y,0,flow};
    nex[top]=h[x]; h[x]=top;
    return;
    }

    void init(void)
    {
    cin>>n;
    memset(h,-1,sizeof(h));
    int flow;
    ss=0; tt=rm(n,n)+1;
    for(int i=1;i<=n+1;++i)
    {
    for(int k=1;k<=n;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i,k),rm(i-1,k),flow);
    }
    }
    for(int i=1;i<=n;++i)
    {
    for(int k=1;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i,k-1),rm(i,k),flow);
    }
    }
    for(int i=1;i<=n+1;++i)
    {
    for(int k=2;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i-1,k-1),rm(i,k-1),flow);
    }
    }
    for(int i=2;i<=n+1;++i)
    {
    for(int k=1;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i-1,k),rm(i-1,k-1),flow);
    }
    }
    return;
    }

    void up(int x)
    {
    while(x>1)
    {
    int k=x/2;
    if(tree[k].dis>tree[x].dis)
    {
    wh[tree[k].tp]=x;
    wh[tree[x].tp]=k;
    tree_swap(tree[k],tree[x]);
    x=k;
    }
    else break;
    }
    return;
    }

    void down(int x)
    {
    while(x<=(tail/2))
    {
    int k=x*2;
    if(k+1<=tail&&tree[k+1].dis<tree[k].dis) ++k;
    if(tree[k].dis<tree[x].dis)
    {
    wh[tree[k].tp]=x;
    wh[tree[x].tp]=k;
    tree_swap(tree[k],tree[x]);
    x=k;
    }
    else break;
    }
    return;
    }

    void dja(void)
    {
    bool vis[maxn*maxn*2];
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=tt+1;++i)
    {
    tree[i].dis=inf;
    tree[i].tp=i-1;
    wh[i-1]=i;
    }
    tail=tt+1;
    tree[1].dis=0;
    for(int i=1;i<=tt+1;++i)
    {
    Tree now=tree[1];
    vis[now.tp]=true; dans[now.tp]=now.dis;
    int k=h[now.tp];
    while(k!=-1)
    {
    node e=edge[k];
    if(vis[e.to]==false&&tree[wh[e.to]].dis>e.mf+now.dis)
    {
    tree[wh[e.to]].dis=e.mf+now.dis;
    up(wh[e.to]);
    }
    k=nex[k];
    }
    tree[1]=tree[tail--];
    down(1);
    }
    cout<<dans[tt];
    return;
    }

    int main(void)
    {
    init();
    dja();
    return 0;
    }

  • 0
    @ 2014-02-16 16:29:42

    ###Block code
    编译成功

    测试数据 #0: Accepted, time = 0 ms, mem = 49620 KiB, score = 10
    测试数据 #1: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #2: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #3: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #4: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #5: Accepted, time = 0 ms, mem = 49620 KiB, score = 10
    测试数据 #6: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #7: Accepted, time = 0 ms, mem = 49612 KiB, score = 10
    测试数据 #8: Accepted, time = 452 ms, mem = 49616 KiB, score = 10
    测试数据 #9: Accepted, time = 374 ms, mem = 49620 KiB, score = 10
    Accepted, time = 826 ms, mem = 49620 KiB, score = 100
    代码
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<queue>
    #include<algorithm>

    using namespace std;

    const long long inf=(long long)1<<40;
    const int maxn=500+10;

    struct Tree
    {
    long long dis;
    int tp;
    }tree[maxn*maxn*2];

    struct node
    {
    int to,flow,mf;
    }edge[maxn*maxn*4*2];

    long long dans[maxn*maxn*2];
    int wh[maxn*maxn*2];
    int n,h[maxn*maxn],nex[maxn*maxn*4*2];
    int top=-1,dis[maxn*maxn],tail;
    int tt,ss;

    void tree_swap(Tree& a,Tree& b)
    {
    Tree c=a; a=b; b=c;
    return;
    }

    int rm(int x,int y)
    {
    if(x>n||y<1) return ss;
    if(x<1||y>n) return tt;
    return n*(y-1)+x;
    }

    void addedge(int x,int y,int flow)
    {
    edge[++top]=(node){y,0,flow};
    nex[top]=h[x]; h[x]=top;
    return;
    }

    void init(void)
    {
    cin>>n;
    memset(h,-1,sizeof(h));
    int flow;
    ss=0; tt=rm(n,n)+1;
    for(int i=1;i<=n+1;++i)
    {
    for(int k=1;k<=n;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i,k),rm(i-1,k),flow);
    }
    }
    for(int i=1;i<=n;++i)
    {
    for(int k=1;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i,k-1),rm(i,k),flow);
    }
    }
    for(int i=1;i<=n+1;++i)
    {
    for(int k=2;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i-1,k-1),rm(i,k-1),flow);
    }
    }
    for(int i=2;i<=n+1;++i)
    {
    for(int k=1;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i-1,k),rm(i-1,k-1),flow);
    }
    }
    return;
    }

    void up(int x)
    {
    while(x>1)
    {
    int k=x/2;
    if(tree[k].dis>tree[x].dis)
    {
    wh[tree[k].tp]=x;
    wh[tree[x].tp]=k;
    tree_swap(tree[k],tree[x]);
    x=k;
    }
    else break;
    }
    return;
    }

    void down(int x)
    {
    while(x<=(tail/2))
    {
    int k=x*2;
    if(k+1<=tail&&tree[k+1].dis<tree[k].dis) ++k;
    if(tree[k].dis<tree[x].dis)
    {
    wh[tree[k].tp]=x;
    wh[tree[x].tp]=k;
    tree_swap(tree[k],tree[x]);
    x=k;
    }
    else break;
    }
    return;
    }

    void dja(void)
    {
    bool vis[maxn*maxn*2];
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=tt+1;++i)
    {
    tree[i].dis=inf;
    tree[i].tp=i-1;
    wh[i-1]=i;
    }
    tail=tt+1;
    tree[1].dis=0;
    for(int i=1;i<=tt+1;++i)
    {
    Tree now=tree[1];
    vis[now.tp]=true; dans[now.tp]=now.dis;
    int k=h[now.tp];
    while(k!=-1)
    {
    node e=edge[k];
    if(vis[e.to]==false&&tree[wh[e.to]].dis>e.mf+now.dis)
    {
    tree[wh[e.to]].dis=e.mf+now.dis;
    up(wh[e.to]);
    }
    k=nex[k];
    }
    tree[1]=tree[tail--];
    down(1);
    }
    cout<<dans[tt];
    return;
    }

    int main(void)
    {
    init();
    dja();
    return 0;
    }

  • 0
    @ 2014-02-16 16:22:44

    看了08年周冬集训队论文才过的,膜拜大牛……
    平面图转对偶图,然后求最短路
    dja+heap
    编译成功

    测试数据 #0: Accepted, time = 0 ms, mem = 49620 KiB, score = 10
    测试数据 #1: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #2: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #3: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #4: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #5: Accepted, time = 0 ms, mem = 49620 KiB, score = 10
    测试数据 #6: Accepted, time = 0 ms, mem = 49616 KiB, score = 10
    测试数据 #7: Accepted, time = 0 ms, mem = 49612 KiB, score = 10
    测试数据 #8: Accepted, time = 452 ms, mem = 49616 KiB, score = 10
    测试数据 #9: Accepted, time = 374 ms, mem = 49620 KiB, score = 10
    Accepted, time = 826 ms, mem = 49620 KiB, score = 100
    代码
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<queue>
    #include<algorithm>

    using namespace std;

    const long long inf=(long long)1<<40;
    const int maxn=500+10;

    struct Tree
    {
    long long dis;
    int tp;
    }tree[maxn*maxn*2];

    struct node
    {
    int to,flow,mf;
    }edge[maxn*maxn*4*2];

    long long dans[maxn*maxn*2];
    int wh[maxn*maxn*2];
    int n,h[maxn*maxn],nex[maxn*maxn*4*2];
    int top=-1,dis[maxn*maxn],tail;
    int tt,ss;

    void tree_swap(Tree& a,Tree& b)
    {
    Tree c=a; a=b; b=c;
    return;
    }

    int rm(int x,int y)
    {
    if(x>n||y<1) return ss;
    if(x<1||y>n) return tt;
    return n*(y-1)+x;
    }

    void addedge(int x,int y,int flow)
    {
    edge[++top]=(node){y,0,flow};
    nex[top]=h[x]; h[x]=top;
    return;
    }

    void init(void)
    {
    cin>>n;
    memset(h,-1,sizeof(h));
    int flow;
    ss=0; tt=rm(n,n)+1;
    for(int i=1;i<=n+1;++i)
    {
    for(int k=1;k<=n;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i,k),rm(i-1,k),flow);
    }
    }
    for(int i=1;i<=n;++i)
    {
    for(int k=1;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i,k-1),rm(i,k),flow);
    }
    }
    for(int i=1;i<=n+1;++i)
    {
    for(int k=2;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i-1,k-1),rm(i,k-1),flow);
    }
    }
    for(int i=2;i<=n+1;++i)
    {
    for(int k=1;k<=n+1;++k)
    {
    scanf("%d",&flow);
    addedge(rm(i-1,k),rm(i-1,k-1),flow);
    }
    }
    return;
    }

    void up(int x)
    {
    while(x>1)
    {
    int k=x/2;
    if(tree[k].dis>tree[x].dis)
    {
    wh[tree[k].tp]=x;
    wh[tree[x].tp]=k;
    tree_swap(tree[k],tree[x]);
    x=k;
    }
    else break;
    }
    return;
    }

    void down(int x)
    {
    while(x<=(tail/2))
    {
    int k=x*2;
    if(k+1<=tail&&tree[k+1].dis<tree[k].dis) ++k;
    if(tree[k].dis<tree[x].dis)
    {
    wh[tree[k].tp]=x;
    wh[tree[x].tp]=k;
    tree_swap(tree[k],tree[x]);
    x=k;
    }
    else break;
    }
    return;
    }

    void dja(void)
    {
    bool vis[maxn*maxn*2];
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=tt+1;++i)
    {
    tree[i].dis=inf;
    tree[i].tp=i-1;
    wh[i-1]=i;
    }
    tail=tt+1;
    tree[1].dis=0;
    for(int i=1;i<=tt+1;++i)
    {
    Tree now=tree[1];
    vis[now.tp]=true; dans[now.tp]=now.dis;
    int k=h[now.tp];
    while(k!=-1)
    {
    node e=edge[k];
    if(vis[e.to]==false&&tree[wh[e.to]].dis>e.mf+now.dis)
    {
    tree[wh[e.to]].dis=e.mf+now.dis;
    up(wh[e.to]);
    }
    k=nex[k];
    }
    tree[1]=tree[tail--];
    down(1);
    }
    cout<<dans[tt];
    return;
    }

    int main(void)
    {
    init();
    dja();
    return 0;
    }

  • 0
    @ 2013-12-17 12:39:43

    把最小割转最短路,,。。。
    SPFA+SLF+LLL目测还是略慢,比DJ慢了不少。。。:

    编译成功

    测试数据 #0: Accepted, time = 0 ms, mem = 3764 KiB, score = 10
    测试数据 #1: Accepted, time = 0 ms, mem = 3768 KiB, score = 10
    测试数据 #2: Accepted, time = 0 ms, mem = 3788 KiB, score = 10
    测试数据 #3: Accepted, time = 0 ms, mem = 3792 KiB, score = 10
    测试数据 #4: Accepted, time = 0 ms, mem = 3800 KiB, score = 10
    测试数据 #5: Accepted, time = 0 ms, mem = 3912 KiB, score = 10
    测试数据 #6: Accepted, time = 15 ms, mem = 3960 KiB, score = 10
    测试数据 #7: Accepted, time = 0 ms, mem = 4012 KiB, score = 10
    测试数据 #8: Accepted, time = 1482 ms, mem = 42956 KiB, score = 10
    测试数据 #9: Accepted, time = 1872 ms, mem = 42968 KiB, score = 10
    Accepted, time = 3369 ms, mem = 42968 KiB, score = 100

    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <deque>

    using namespace std ;

    #define MAXN 510
    #define inf 0x7fffffff
    #define MAXV MAXN * MAXN

    struct edge {
    edge *next ;
    int t , d ;
    } *head[ MAXV ] ;

    void AddEdge( int s , int t , int d ) {
    edge *p = new( edge ) ;
    p -> t = t , p -> d = d , p -> next = head[ s ] ;
    head[ s ] = p ;
    }

    int node[ MAXN ][ MAXN ] , S , T , n , V = 0 ;

    int dist[ MAXV ] ; bool f[ MAXV ] ;
    deque< int >Q ;

    int spfa( ) {
    for ( int i = 0 ; i ++ < V ; ) dist[ i ] = inf , f[ i ] = false ;
    Q.clear( ) ; long long sum = 0 ;
    Q.push_back( S ) , dist[ S ] = 0 , f[ S ] = true ;
    while ( ! Q.empty( ) ) {
    while ( dist[ Q.front( ) ] > sum / Q.size( ) + 1 ) Q.push_back( Q.front( ) ) , Q.pop_front( ) ;
    int v = Q.front( ) ; Q.pop_front( ) ; f[ v ] = false ; sum -= dist[ v ] ;
    if ( dist[ v ] > dist[ T ] ) continue ;
    for ( edge *p = head[ v ] ; p ; p = p -> next ) if ( dist[ p -> t ] > dist[ v ] + p -> d ) {
    if ( f[ p -> t ] ) sum -= dist[ p -> t ] ;
    dist[ p -> t ] = dist[ v ] + p -> d ;
    sum += dist[ p -> t ] ;
    if ( ! f[ p -> t ] ) {
    f[ p -> t ] = true ;
    if ( Q.empty( ) ) Q.push_back( p -> t ) ;
    else if ( dist[ p -> t ] < dist[ Q.front( ) ] ) Q.push_front( p -> t ) ;
    else Q.push_back( p -> t ) ;
    }
    }
    }
    return dist[ T ] ;
    }

    int main( ) {
    scanf( "%d" , &n ) ;
    S = ++ V , T = ++ V ;
    for ( int i = 0 ; i ++ < n ; ) for ( int j = 0 ; j ++ < n ; ) node[ i ][ j ] = ++ V ;
    for ( int i = 0 ; i ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ;
    AddEdge( node[ 1 ][ i ] , T , x ) ;
    }
    for ( int i = 0 ; i ++ < n - 1 ; ) {
    for ( int j = 0 ; j ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ;
    AddEdge( node[ i + 1 ][ j ] , node[ i ][ j ] , x ) ;
    }
    }
    for ( int i = 0 ; i ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ;
    AddEdge( S , node[ n ][ i ] , x ) ;
    }
    for ( int i = 0 ; i++ < n ; ) {
    int x ; scanf( "%d" , &x ) ; AddEdge( S , node[ i ][ 1 ] , x ) ;
    for ( int j = 0 ; j ++ < n - 1 ; ) scanf( "%d" , &x ) , AddEdge( node[ i ][ j ] , node[ i ][ j + 1 ] , x ) ;
    scanf( "%d" , &x ) ; AddEdge( node[ i ][ n ] , T , x ) ;
    }
    for ( int i = 0 ; i ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ;
    }
    for ( int i = 0 ; i ++ < n - 1 ; ) for ( int j = 0 ; j ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ; AddEdge( node[ i ][ j ] , node[ i + 1 ][ j ] , x ) ;
    }
    for ( int i = 0 ; i ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ;
    }
    for ( int i = 0 ; i ++ < n ; ) {
    int x ; scanf( "%d" , &x ) ;
    for ( int j = 0 ; j ++ < n - 1 ; ) scanf( "%d" , &x ) , AddEdge( node[ i ][ j + 1 ] , node[ i ][ j ] , x ) ;
    scanf( "%d" , &x ) ;
    }
    printf( "%d\n" , spfa( ) ) ;
    return 0 ;
    }

  • 1

信息

ID
1734
难度
6
分类
图结构 | 平面图图结构 | 网络流图结构 | 最短路 点击显示
标签
递交数
341
已通过
90
通过率
26%
被复制
2
上传者