题解

9 条题解

  • 1
    @ 2018-03-28 21:48:31

    反演裸题,乱搞就行了。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    bool pd[200005];
    ll p[200005],mu[200005],s[200005];
    ll f[200005];
    void getmu(int n){
        ll ps=0; mu[1]=1;
        for (ll i=2;i<=n;i++){
            if (pd[i]==0) mu[i]=-1,ps++,p[ps]=i;
            for (ll j=1;j<=ps;j++){
                if (i*p[j]>n) break;
                pd[i*p[j]]=1;
                if (i%p[j]==0){
                    mu[i*p[j]]=0; break;
                }
                mu[i*p[j]]=-mu[i];
            }
        }
        s[0]=0;
        for (ll i=1;i<=n;i++)
        s[i]=mu[i]+s[i-1];
    }
    ll fy(int n,int m,int d){
        ll ans=0;
        n/=d; m/=d;
        for (int i=1;i<=n;i){
            int las=min(n/(n/i),m/(m/i));
            ans+=(s[las]-s[i-1])*(n/i)*(m/i);
            i=las+1;
        }
        return ans;
    }
    int main(){
        int n,m; 
        scanf("%d%d",&n,&m);
        if (n>m) swap(n,m);
        memset(pd,0,sizeof(pd));
        getmu(m);
        for (int i=1;i<=n;i++){
            f[i]=fy(n,m,i);
        }
        ll ans=0;
        for (int i=1;i<=n;i++){
            ans+=2*(i-1)*f[i]+f[i];
        }
        printf("%lld\n",ans);
        return 0;
    } 
    
  • 1
    @ 2017-04-10 10:10:13
  • 0
    @ 2018-08-18 16:45:16

    注意计算出来的中间结果的类型,否则最后一个测试点会溢出。

    #include <stdio.h>
    
    long long f[100001];
    long long n, m;
    
    int main()
    {
        long long mx;
        int i, j;
        long long ans = 0;
        scanf("%lld%lld", &n, &m);
        if (n > m) mx = m;
        else mx = n;
        for (i = mx; i >= 1; i--) {
            f[i] = (n / i) * (m / i);
            for (j = i * 2; j <= mx; j += i) {
                f[i] -= f[j];
            }
        }
        for (i = 1; i <= mx; i++) {
            ans += f[i] * (2 * i - 1);
        }
        printf("%lld", ans);
        return 0;
    }
    
    
  • 0
    @ 2016-11-09 20:17:22
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int maxn =100005;
    typedef long long LL ;
    LL f[maxn];
    int main() {
        int n,m;
        scanf("%d%d",&n,&m);
        LL t=min(n,m);
        LL ans=0;
        for(int i=t; i; i--) {
            f[i]=(LL)(m/i)*(n/i);
            for(int j=i+i; j<maxn; j+=i)
                f[i]-=f[j];
            ans+=f[i]*(2*i-1); }
        printf("%lld\n",ans);
        return 0; }
    
  • 0
    @ 2015-09-09 22:51:08

    测试数据 #0: Accepted, time = 15 ms, mem = 1296 KiB, score = 10

    测试数据 #1: Accepted, time = 15 ms, mem = 1292 KiB, score = 10

    测试数据 #2: Accepted, time = 0 ms, mem = 1292 KiB, score = 10

    测试数据 #3: Accepted, time = 0 ms, mem = 1296 KiB, score = 10

    测试数据 #4: Accepted, time = 0 ms, mem = 1292 KiB, score = 10

    测试数据 #5: Accepted, time = 1 ms, mem = 1292 KiB, score = 10

    测试数据 #6: Accepted, time = 0 ms, mem = 1292 KiB, score = 10

    测试数据 #7: Accepted, time = 15 ms, mem = 1296 KiB, score = 10

    测试数据 #8: Accepted, time = 15 ms, mem = 1296 KiB, score = 10

    测试数据 #9: Accepted, time = 18 ms, mem = 1292 KiB, score = 10

    Accepted, time = 79 ms, mem = 1296 KiB, score = 100

    代码

    #include <iostream>
    #include <stdio.h>

    using namespace std;

    inline long long min( long long a , long long b )
    {
    if( a > b )
    return b;
    return a;
    }

    long long f[100000 + 2];
    long long n , m;
    long long ans;
    long long i , j;

    int main()
    {
    scanf( "%d %d" , &n , &m );
    for( i = min( n , m ) ; i >= 1 ; i-- )
    {
    f[i] = ( n / i ) * ( m / i );
    for( j = 2 * i ; j <= min( n , m ) ; j += i )
    f[i] -= f[j];
    }
    for( i = min( n , m ) ; i >= 1 ; i-- )
    ans += f[i] * ( 2 * i - 1 );
    cout << ans << endl;
    return 0;
    }
    水题

  • 0
    @ 2014-06-10 15:54:37

    #include <cstdio>
    #include <algorithm>
    #include <cstring>

    using namespace std ;

    #define ll long long
    #define Sum( l , r ) ( sum[ r ] - sum[ l - 1 ] )
    #define maxn 100100

    bool f[ maxn ] ;
    int u[ maxn ] , n , m , sum[ maxn ] ;
    ll ans = 0 ;

    void Init( ) {
    memset( f , true , sizeof( f ) ) ;
    f[ 0 ] = f[ 1 ] = false , u[ 1 ] = 1 ;
    for ( int i = 1 ; i ++ < min( n , m ) ; ) if ( f[ i ] ) {
    u[ i ] = - 1 ;
    for ( int j = i << 1 ; j <= min( n , m ) ; j += i ) {
    f[ j ] = false ;
    if ( ! ( ( j / i ) % i ) ) u[ j ] = 0 ; else u[ j ] = u[ j / i ] * - 1 ;
    }
    }
    sum[ 0 ] = 0 ;
    for ( int i = 0 ; i ++ < min( n , m ) ; ) sum[ i ] = sum[ i - 1 ] + u[ i ] ;
    }

    ll query( int a , int b ) {
    ll ret = 0 ;
    for ( int i = 1 ; i <= min( a , b ) ; ) {
    int pos = min( a / ( a / i ) , b / ( b / i ) ) ;
    ret += ( ll )( Sum( i , pos ) ) * ( ll )( a / i ) * ( ll )( b / i ) ;
    i = pos + 1 ;
    }
    return ret ;
    }

    int main( ) {
    scanf( "%d%d" , &n , &m ) ;
    Init( ) ;
    for ( int i = 0 ; i ++ < min( n , m ) ; ) {
    ans += ( ll )( i ) * query( n / i , m / i ) * 2 ;
    }
    ans -= ( ll )( n ) * ( ll )( m ) ;
    printf( "%lld\n" , ans ) ;
    return 0 ;
    }

  • -1
    @ 2014-06-27 20:22:53

    80分很开心了~~~~~~
    直接二维n,m然后gcd(n,m),此次能量损失为sqr(gcd(n,m)),并且把斜率记入(相当于已经算了这条线上所有的损失了)

  • -1
    @ 2013-05-19 00:07:05

    最简单朴素竟然能得80分!

  • 1

信息

ID
1732
难度
5
分类
数论 点击显示
标签
递交数
427
已通过
147
通过率
34%
被复制
3
上传者