题解

191 条题解

  • 0
    @ 2006-05-09 21:48:39

    NND~我就差一个数据7了,那是什么东西饿!。。。。

  • 0
    @ 2006-09-11 16:40:01

    可以证明:能被11整除的数,其奇数位的和与偶数位的和之差能被11整除。

    所以,一个位数为偶数的回文数一定能被11整除

    搜索时就只需搜索位数为奇数的回文数(当然,要注意11的特殊性,不要漏掉)

    然后就是枚举回文数(枚举每个数的前一半),判断素数,输出就行了

  • 0
    @ 2006-02-27 17:21:38

    我写了四个程序

    测试了N次 终于过了 50ms

  • 0
    @ 2006-01-26 21:47:06

    枚举回文数,然后判断就行了

  • -1
    @ 2019-01-30 13:57:00

    我想怎么会TLE,楼下那个m=min(m,1000000000)的真相了!

    #include <iostream>
    #include <cmath>
    
    using namespace std;
    
    bool is_prime(int x){
        for(int i=2;i*i<=x;i++){
            if(x%i==0) return false;
        }
        return true;
    }
    
    bool is_palindromic(int x){
        int bitn[10];
        int nown=0;
        while(x){
            bitn[nown++]=x%10;
            x/=10;
        }
        nown--;
        for(int i=0;i<=nown;i++){
            if(bitn[i]!=bitn[nown-i]) return false;
        }
        return true;
    }
    
    int main()
    {
        int m,n;
        cin>>m>>n;
        n = min(n,10000000);
        for(int i=m;i<=n;i++){
            if(is_palindromic(i) && is_prime(i)) cout<<i<<endl;
        }
        return 0;
    }
    
  • -1
    @ 2018-01-16 00:38:44

    快捷实用!!

    #include <cstdio>
    #include <cstdlib>
    #include <hash_map>
    #include <string>
    #include <cstring>
    #include <iostream>
    using namespace std;
    int a[]={5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,929,10301,10501,10601,11311,11411,12421,12721,12821,13331,13831,13931,14341,14741,15451,15551,16061,16361,16561,16661,17471,17971,18181,18481,19391,19891,19991,30103,30203,30403,30703,30803,31013,31513,32323,32423,33533,34543,34843,35053,35153,35353,35753,36263,36563,37273,37573,38083,38183,38783,39293,70207,70507,70607,71317,71917,72227,72727,73037,73237,73637,74047,74747,75557,76367,76667,77377,77477,77977,78487,78787,78887,79397,79697,79997,90709,91019,93139,93239,93739,94049,94349,94649,94849,94949,95959,96269,96469,96769,97379,97579,97879,98389,98689,1003001,1008001,1022201,1028201,1035301,1043401,1055501,1062601,1065601,1074701,1082801,1085801,1092901,1093901,1114111,1117111,1120211,1123211,1126211,1129211,1134311,1145411,1150511,1153511,1160611,1163611,1175711,1177711,1178711,1180811,1183811,1186811,1190911,1193911,1196911,1201021,1208021,1212121,1215121,1218121,1221221,1235321,1242421,1243421,1245421,1250521,1253521,1257521,1262621,1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,1300031,1303031,1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,1360631,1362631,1363631,1371731,1374731,1390931,1407041,1409041,1411141,1412141,1422241,1437341,1444441,1447441,1452541,1456541,1461641,1463641,1464641,1469641,1486841,1489841,1490941,1496941,1508051,1513151,1520251,1532351,1535351,1542451,1548451,1550551,1551551,1556551,1557551,1565651,1572751,1579751,1580851,1583851,1589851,1594951,1597951,1598951,1600061,1609061,1611161,1616161,1628261,1630361,1633361,1640461,1643461,1646461,1654561,1657561,1658561,1660661,1670761,1684861,1685861,1688861,1695961,1703071,1707071,1712171,1714171,1730371,1734371,1737371,1748471,1755571,1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,1824281,1826281,1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,1876781,1878781,1879781,1880881,1881881,1883881,1884881,1895981,1903091,1908091,1909091,1917191,1924291,1930391,1936391,1941491,1951591,1952591,1957591,1958591,1963691,1968691,1969691,1970791,1976791,1981891,1982891,1984891,1987891,1988891,1993991,1995991,1998991,3001003,3002003,3007003,3016103,3026203,3064603,3065603,3072703,3073703,3075703,3083803,3089803,3091903,3095903,3103013,3106013,3127213,3135313,3140413,3155513,3158513,3160613,3166613,3181813,3187813,3193913,3196913,3198913,3211123,3212123,3218123,3222223,3223223,3228223,3233323,3236323,3241423,3245423,3252523,3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,3288823,3291923,3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,3329233,3331333,3337333,3343433,3353533,3362633,3364633,3365633,3368633,3380833,3391933,3392933,3400043,3411143,3417143,3424243,3425243,3427243,3439343,3441443,3443443,3444443,3447443,3449443,3452543,3460643,3466643,3470743,3479743,3485843,3487843,3503053,3515153,3517153,3528253,3541453,3553553,3558553,3563653,3569653,3586853,3589853,3590953,3591953,3594953,3601063,3607063,3618163,3621263,3627263,3635363,3643463,3646463,3670763,3673763,3680863,3689863,3698963,3708073,3709073,3716173,3717173,3721273,3722273,3728273,3732373,3743473,3746473,3762673,3763673,3765673,3768673,3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,3804083,3806083,3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,3863683,3864683,3867683,3869683,3871783,3878783,3893983,3899983,3913193,3916193,3918193,3924293,3927293,3931393,3938393,3942493,3946493,3948493,3964693,3970793,3983893,3991993,3994993,3997993,3998993,7014107,7035307,7036307,7041407,7046407,7057507,7065607,7069607,7073707,7079707,7082807,7084807,7087807,7093907,7096907,7100017,7114117,7115117,7118117,7129217,7134317,7136317,7141417,7145417,7155517,7156517,7158517,7159517,7177717,7190917,7194917,7215127,7226227,7246427,7249427,7250527,7256527,7257527,7261627,7267627,7276727,7278727,7291927,7300037,7302037,7310137,7314137,7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,7388837,7392937,7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,7461647,7466647,7472747,7475747,7485847,7486847,7489847,7493947,7507057,7508057,7518157,7519157,7521257,7527257,7540457,7562657,7564657,7576757,7586857,7592957,7594957,7600067,7611167,7619167,7622267,7630367,7632367,7644467,7654567,7662667,7665667,7666667,7668667,7669667,7674767,7681867,7690967,7693967,7696967,7715177,7718177,7722277,7729277,7733377,7742477,7747477,7750577,7758577,7764677,7772777,7774777,7778777,7782877,7783877,7791977,7794977,7807087,7819187,7820287,7821287,7831387,7832387,7838387,7843487,7850587,7856587,7865687,7867687,7868687,7873787,7884887,7891987,7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,7943497,7949497,7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,9002009,9015109,9024209,9037309,9042409,9043409,9045409,9046409,9049409,9067609,9073709,9076709,9078709,9091909,9095909,9103019,9109019,9110119,9127219,9128219,9136319,9149419,9169619,9173719,9174719,9179719,9185819,9196919,9199919,9200029,9209029,9212129,9217129,9222229,9223229,9230329,9231329,9255529,9269629,9271729,9277729,9280829,9286829,9289829,9318139,9320239,9324239,9329239,9332339,9338339,9351539,9357539,9375739,9384839,9397939,9400049,9414149,9419149,9433349,9439349,9440449,9446449,9451549,9470749,9477749,9492949,9493949,9495949,9504059,9514159,9526259,9529259,9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,9601069,9602069,9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,9650569,9657569,9670769,9686869,9700079,9709079,9711179,9714179,9724279,9727279,9732379,9733379,9743479,9749479,9752579,9754579,9758579,9762679,9770779,9776779,9779779,9781879,9782879,9787879,9788879,9795979,9801089,9807089,9809089,9817189,9818189,9820289,9822289,9836389,9837389,9845489,9852589,9871789,9888889,9889889,9896989,9902099,9907099,9908099,9916199,9918199,9919199,9921299,9923299,9926299,9927299,9931399,9932399,9935399,9938399,9957599,9965699,9978799,9980899,9981899,9989899};
    int main()
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=lower_bound(a,a+779,n)-a;i<upper_bound(a,a+779,m)-a;i++)
            printf("%d\n",a[i]);
        return 0;
    }
    
  • -1
    @ 2017-11-02 22:13:04

    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<cstdio>
    #include<cstdlib>
    #include<algorithm>
    #include<vector>
    using namespace std;
    unsigned long long n,m;
    int a[20001],b[20001],c[20001],d[20001];
    int as(int a)
    {
    if(a==2) return 1;
    if(a<=1) return 0;
    for(int i=2;i<=sqrt(a);i++)
    if(a%i==0) return 0;
    return 1;
    }
    int sa(int b)
    {
    int k=0;
    int j=b,v=b;
    if(b>10000000)
    {
    j=b/10000;
    while(v>10000)
    {
    k=k*10+v%10;
    v=v/10;
    }
    }
    else
    while(b>0)
    {
    k=k*10+b%10;
    b=b/10;
    }
    if(j==k)
    return 1;
    return 0;
    }
    int main()
    {
    cin>>n>>m;
    for(int i=n;i<=m;i++)
    if(sa(i))
    {
    if(as(i))
    cout<<i<<endl;
    }
    return 0;
    }
    //会过几组,见谅,题目bug,时过时不过。。。。。

  • -1
    @ 2017-07-19 08:42:39

    Accepted

    状态 耗时 内存占用

    #1 Accepted 3ms 2.25MiB
    #2 Accepted 4ms 2.25MiB
    #3 Accepted 14ms 4.41MiB
    #4 Accepted 23ms 4.625MiB
    #5 Accepted 134ms 16.5MiB
    #6 Accepted 133ms 14.0MiB
    #7 Accepted 102ms 15.375MiB
    #8 Accepted 105ms 14.0MiB
    #9 Accepted 2ms 2.25MiB
    #10 Accepted 840ms 117.945MiB
    代码
    #include <iostream>
    #include <cstdio>
    using namespace std;

    int n,m;
    bool not_prime[100000007] = {0};
    int prime[20000007] = {0};
    int prime_count = 0;

    //线性素数筛
    void work_prime( int n)
    {
    not_prime[1] = 1;
    for ( int i=2; i<=n; i++){
    if ( !not_prime[i] ){
    prime[++prime_count] = i;
    }
    for ( int j=1; j<=prime_count; j++){
    if ( prime[j]*i>n ){
    break;
    }
    not_prime[prime[j]*i] = 1;
    if ( i%prime[j]==0 ){
    break;
    }
    }
    }
    }

    //判断回文
    bool palidrome( int x)
    {
    int digit[13] = {0};
    int m = x;
    int count = 0;

    while ( m>0 ){
    digit[++count] = m%10;
    m /= 10;
    }

    for ( int i=1; i<=count/2; i++){
    if ( digit[i]!=digit[count-i+1] ){
    return 0;
    }
    }

    return 1;
    }

    int main()
    {
    ios::sync_with_stdio(false);

    cin >> n >> m;

    if ( m<n ){
    int t = m;
    m = n;
    n = t;
    }

    work_prime(m);

    int start = 0;
    for ( int i=1; i<=prime_count; i++){
    if ( prime[i]<n ){
    continue;
    }
    else {
    start = i;
    break;
    }
    }

    for ( int i=start; i<=prime_count; i++){
    if ( palidrome(prime[i]) ){
    cout << prime[i] << endl;
    }
    }

    return 0;
    }

  • -1
    @ 2017-03-05 15:52:54

    meet-in-the-middle 配合 miller-rabin测试

  • -1
    @ 2006-01-27 23:49:00

    ..此题在我吃早饭的时候完成

    总共写了三个程序

    p1042prime.dpr

    p1042break.dpr

    p1042.dpr

    第一个大概运行了一分钟吧(或者更多?)

    第二个运行了几秒钟

    第三个程序就是交上去的

    至于每个程序有什么作用...

    不要说通透了吧...

  • -2
    @ 2017-10-02 09:33:00

    线性筛素数
    利用回文数正反都一样的性质

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    template<class T> inline void read(T &_a){
        bool f=0;int _ch=getchar();_a=0;
        while(_ch<'0' || _ch>'9'){if(_ch=='-')f=1;_ch=getchar();}
        while(_ch>='0' && _ch<='9'){_a=(_a<<1)+(_a<<3)+_ch-'0';_ch=getchar();}
        if(f)_a=-_a;
    }
    
    int l,r,tot;
    bool check[100000001];
    int prim[100001];
    
    inline void getprim()
    {
        for (register int i=2;i<=r;++i)
        {
            if(!check[i]) prim[++tot]=i;
            for (register int j=1;j<=tot&&prim[j]*i<=r;++j)
            {
                check[prim[j]*i]=true;
                if(i%prim[j]==0) break;
            }
        }
    }
    
    int main()
    {
        read(l); read(r);
        getprim();
        for (register int i=lower_bound(prim+1,prim+tot+1,l)-prim;i<=tot;++i)
        {
            int tmp=prim[i],res=0;
            while(tmp)
            {
                res*=10;
                res+=tmp%10;
                tmp/=10;
            }
            if(prim[i]==res) printf("%d\n",prim[i]);
        }
        return 0;
    }
    

信息

ID
1042
难度
7
分类
搜索 | 搜索与剪枝 点击显示
标签
(无)
递交数
6601
已通过
1521
通过率
23%
被复制
13
上传者