/ Vijos / 题库 /

求和

求和

描述

一条狭长的纸带被均匀划分出了 n 个格子,格子编号从 1 到 n。每个格子上都染了一种颜色\(color_i\)(用[1,m]当中的一个整数表示),并且写了一个数字\(number_i\)。

图片

定义一种特殊的三元组:(x, y, z),其中 x,y,z 都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:
1. x, y, z都是整数, x < y < z, y − x = z − y
2. \(color_x\) = \(color_z\)

满足上述条件的**三元组的分数**规定为(x + z) ∗ (\(number_x\) + \(number_z\))。**整个纸带的分数**规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以 10,007 所得的余数即可。

格式

输入格式

第一行是用一个空格隔开的两个正整数 n 和 m,n 代表纸带上格子的个数,m 代表纸带上 颜色的种类数。

第二行有 n 个用空格隔开的正整数,第 i 个数字\(number_i\)代表纸带上编号为 i 的格子上面写的数字。

第三行有 n 个用空格隔开的正整数,第 i 个数字\(color_i\)代表纸带上编号为 i 的格子染的颜色。

输出格式

共一行,一个整数,表示所求的纸带分数除以 10,007 所得的余数。

样例1

样例输入1

6 2
5 5 3 2 2 2
2 2 1 1 2 1

样例输出1

82

样例2

样例输入2

15 4
5 10 8 2 2 2 9 9 7 7 5 6 4 2 4
2 2 3 3 4 3 3 2 4 4 4 4 1 1 1

样例输出2

1388

限制

对于第 1 组至第 2 组数据,1 ≤ n ≤ 100, 1 ≤ m ≤ 5; 对于第 3 组至第 4 组数据,1 ≤ n ≤ 3000, 1 ≤ m ≤ 100;

对于第 5 组至第 6 组数据,1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000,且不存在出现次数超过 20 的颜色;

对于全部 10 组数据, 1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, 1 ≤ \(color_i\) ≤ m, 1 ≤ \(number_i\) ≤ 100000。

提示

【输入输出样例 1 说明】

纸带如题目描述中的图所示。

所有满足条件的三元组为:(1, 3, 5), (4, 5, 6)。

所以纸带的分数为(1 + 5) ∗ (5 + 2) + (4 + 6) ∗ (2 + 2) = 42 + 40 = 82。

来源

NOIP 2015 普及组 第三题
数据由AHdoc生成

信息

ID
1976
难度
8
分类
(无)
标签
递交数
2976
已通过
390
通过率
13%
被复制
6
上传者

相关

在下列训练计划中:

RP++分类题库