均分纸牌

均分纸牌

测试数据来自 system/1123

题目描述

有 \(N\) 堆纸牌,编号分别为 \(1,2,\ldots,N\)。每堆上有若干张,但纸牌总数必为 \(N\) 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 \(1\) 堆上取的纸牌,只能移到编号为 \(2\) 的堆上;在编号为 \(N\) 的堆上取的纸牌,只能移到编号为 \(N-1\) 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 \(N=4\) 时,\(4\) 堆纸牌数分别为 \(9,8,17,6\)。

移动 \(3\) 次可达到目的:

  • 从第三堆取 \(4\) 张牌放到第四堆,此时每堆纸牌数分别为 \(9,8,13,10\)。
  • 从第三堆取 \(3\) 张牌放到第二堆,此时每堆纸牌数分别为 \(9,11,10,10\)。
  • 从第二堆取 \(1\) 张牌放到第一堆,此时每堆纸牌数分别为 \(10,10,10,10\)。

输入格式

第一行共一个整数 \(N\),表示纸牌堆数。

第二行共 \(N\) 个整数 \(A_1,A_2,\ldots,A_N\),表示每堆纸牌初始时的纸牌数。

输出格式

共一行,即所有堆均达到相等时的最少移动次数。

输入输出样例 #1

输入 #1

4
9 8 17 6

输出 #1

3

说明/提示

对于 \(100\%\) 的数据,\(1 \le N \le 100\),\(1 \le A_i \le 10000\)。

【题目来源】

NOIP 2002 提高组第一题

信息

ID
1026
难度
2
分类
贪心 | 模拟 点击显示
标签
递交数
0
已通过
0
通过率
?
上传者