方程
题目描述
给定方程
X1+X2+. +Xn=M
我们对第l..N1个变量进行一些限制:
Xl < = A
X2 < = A2
Xn1 < = An1
我们对第n1 + 1..n1+n2个变量进行一些限制:
Xn1+l > = An1+1
Xn1+2 > = An1+2
Xnl+n2 > = Anl+n2
求:在满足这些限制的前提下,该方程正整数解的个数。
答案可能很大,请输出对p取模后的答案,也即答案除以p的余数。
输入格式
输入含有多组数据,第一行两个正整数T,p。T表示这个测试点内的数据组数,p的含义见题目描述。
对于每组数据,第一行四个非负整数n,n1,n2,m。
第二行nl+n2个正整数,表示A1..n1+n2。请注意,如果n1+n2等于0,那么这一行会成为一个空行。
输出格式
共T行,每行一个正整数表示取模后的答案。
样例输入
3 10007
3 1 1 6
3 3
3 0 0 5
3 1 1 3
3 3
样例输出
3
6
0
【样例说明】
对于第一组数据,三组解为(1,3,2),(1,4,1),(2,3,1)
对于第二组数据,六组解为(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)
提示
n < = 10^9, n1 < = 8, n2 < = 8, m < = 10^9,p<=437367875
对于l00%的测试数据: T < = 5,1 < = A1..n1_n2 < = m,n1+n2 < = n
信息
- 难度
- 9
- 分类
- (无)
- 标签
- 递交数
- 5
- 已通过
- 2
- 通过率
- 40%
- 上传者