自驾游
测试数据来自 nnu_contest/1180
描述
中北学院国庆假期放了4天~,信息系的小A和小B决定利用这4天的时间外出旅行,他们将想去的城市从1到N编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市i 的海拔高度为Hi,城市i 和城市j 之间的距离d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i,j] = |Hi - Hj|。
旅行过程中,小A和小B轮流开车,第一天小A开车,之后每天轮换一次。他们计划选择一个城市S作为起点,一直向东行驶,并且最多行驶X公里就结束旅行。小A和小B的驾驶风格不同,小B总是沿着前进方向选择一个最近的城市作为目的地,而小A总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出X公里,他们就会结束旅行。
在启程之前,小A想知道两个问题:
1.对于一个给定的X=X0,从哪一个城市出发,小A开车行驶的路程总数与小B行驶的路程总数的比值最小(如果小B的行驶路程为0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小A开车行驶的路程总数与小B行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
2. 对任意给定的X=Xi 和出发城市Si,小A开车行驶的路程总数以及小B行驶的路程总数。
格式
输入格式
第一行包含一个整数N,表示城市的数目。
第二行有N个整数,每两个整数之间用一个空格隔开,依次表示城市1到城市N的海拔高度,即H1,H2,……,Hn,且每个Hi 都是不同的。
第三行包含一个整数X0。
第四行为一个整数M,表示给定M组Si和Xi。
接下来的M行,每行包含2个整数Si 和Xi,表示从城市Si 出发,最多行驶Xi 公里。
输出格式
输出共M+1行。
第一行包含一个整数S0,表示对于给定的X0,从编号为S0的城市出发,小A开车行驶
的路程总数与小B行驶的路程总数的比值最小。
接下来的M行,每行包含2个整数,之间用一个空格隔开,依次表示在给定的Si 和Xi 下小A行驶的里程总数和小B行驶的里程总数。
样例1
样例输入1
4
2 3 1 4
3
4
1 3
2 3
3 3
4 3
样例输出1
1
1 1
2 0
0 0
0 0
样例2
样例输入2
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
样例输出2
2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0
限制
每个测试点1s
提示
对于30%的数据,有1≤N≤20,1≤M≤20;
对于40%的数据,有1≤N≤100,1≤M≤100;
对于50%的数据,有1≤N≤100,1≤M≤1,000;
对于70%的数据,有1≤N≤1,000,1≤M≤10,000;
对于100%的数据,有1≤N≤100,000,1≤M≤10,000,-1,000,000,000≤Hi≤1,000,000,000,0≤X0≤1,000,000,000,1≤Si≤N,0≤Xi≤1,000,000,000,数据保证Hi 互不相同。
来源
Noip2012提高组复赛Day1T3
信息
- ID
- 1470
- 难度
- (无)
- 分类
- (无)
- 标签
- (无)
- 递交数
- 0
- 已通过
- 0
- 通过率
- ?
- 上传者