奶酪
测试数据来自 system/2031
描述
现有一块大奶酪,它的高度为 \(h\) ,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多 半径相同 的球形空洞。我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 \(z=0\),奶酪的上表面为 \(z=h\)。
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另外一个空洞,特别地,如果一个空洞与下表面相切或是相交, Jerry 则可以从奶酪的下表面跑进空洞;如果一个空洞与上表面相切或是相交, Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在 不破坏奶酪 的情况下,能否利用已有的空洞跑到奶酪的上表面去?
空间内两点 \(P_1(x_1,y_1,z_1)\),\(P_2(x_2,y_2,z_2)\) 的距离公式如下:
\(dist(P_1,P_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)。
格式
输入格式
输入包含多组数据。
输入的第一行,包含一个正整数 \(T\),代表该输入文件中所含的数据组数。接下来是 \(T\) 组数据,每组数据的格式如下:
第一行包含三个整数 \(n\),\(h\) 和 \(r\) ,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。
接下来的 \(n\) 行,每行包含三个整数 \(x\),\(y\),\(z\),两个数之间以一个空格分开,表示空洞球心的坐标为 \((x,y,z)\)。
输出格式
输出包含 \(T\) 行,分别对应 \(T\) 组数据的答案,如果在第 \(i\) 组数据中, Jerry 能从下表面跑到上表面,则输出 “Yes”,如果不能,则输出 “No”(均不包含引号)。
样例1
样例输入1
3
2 4 1
0 0 1
0 0 3
2 5 1
0 0 1
0 0 4
2 5 2
0 0 2
2 0 4
样例输出1
Yes
No
Yes
限制
对于 \(20\%\) 的数据,\(n=1\),\(1\le h,r\le 10,000\),坐标的绝对值不超过 \(10,000\)。
对于 \(40\%\) 的数据,\(1\le n\le 8\),\(1\le h,r\le 10,000\),坐标的绝对值不超过 \(10,000\)。
对于 \(80\%\) 的数据,\(1\le n\le 1,000\),\(1\le h,r\le 10,000\),坐标的绝对值不超过 \(10,000\)。
对于 \(100\%\) 的数据,\(1\le n\le 1,000\),\(1\le h,r\le 1,000,000,000\),\(T\le 20\),坐标的绝对值不超过 \(1,000,000,000\)。
信息
- ID
- 1012
- 难度
- 9
- 分类
- (无)
- 标签
- 递交数
- 5
- 已通过
- 2
- 通过率
- 40%
- 上传者
相关
在下列比赛中: