Mission 2 - C : The Correct Key
P1027 Mission 2 - C : The Correct Key
Problem Background
After successfully going into the capital of the USW, Radar immediately goes to the room which stores the secret files of the USW. But the room is locked. Only if Radar answer a problem right, it will open the door.
Can you help Radar solve the problem?
Problem Statement
There’re \(n\) arrays \(\left\{a_0,a_1,a_2,a_3,\cdots,a_{n-1}\right\}\), each array has \(m\) elements. We note that \(a_{x,y}\) is the \((y+1)^{th}\) element of \(a_x\).
Make \(\displaystyle \forall\ k\in[0,m),b_{k}:=\max^{n-1}_{i=0}\max\left\{a_{i,k},a_{k, \left(i\ \bmod\ m\right)}\right\}\).
Please figure out \(\displaystyle\max^{m-1}_{i=0}b_{i}\).
Input
\(n\ m\)
\(a_{1,1}\ a_{1,2}\ \cdots\ a_{1,m}\)
\(a_{2,1}\ a_{2,2}\ \cdots\ a_{2,m}\)
\(\ \ \vdots\ \ \ \ \ \ \vdots\ \ \ \ \ \ \vdots\ \ \ \ \ \ \vdots\)
\(a_{n,1}\ a_{n,2}\ \cdots\ a_{n,m}\)
Output
\(\displaystyle\large\max^{m}_{i=1}b_{i}\)
Constraints
For \(30\) points:
- \(1 \le m \le n \le 8\).
For \(100\) points:
- \(1 \le n \le 3 \times 10^5\).
- \(1 \le m \le 8\).
- \(m \le n\).
- \(a_{x,y} \le 10^9(1 \le x \le n, 1 \le y \le m)\).
信息
- ID
- 1027
- 难度
- 250
- 分类
- (无)
- 标签
- (无)
- 递交数
- 50
- 已通过
- 14
- 通过率
- 28%
- 上传者