[CSP-S 2022] 星战
暂无测试数据。
[CSP-S 2022] 星战
题目描述
在这一轮的星际战争中,我方在宇宙中建立了 \(n\) 个据点,以 \(m\) 个单向虫洞连接。我们把终点为据点 \(u\) 的所有虫洞归为据点 \(u\) 的虫洞。
战火纷飞之中这些虫洞很难长久存在,敌人的打击随时可能到来。这些打击中的有效打击可以分为两类:
- 敌人会摧毁某个虫洞,这会使它连接的两个据点无法再通过这个虫洞直接到达,但这样的打击无法摧毁它连接的两个据点。
- 敌人会摧毁某个据点,由于虫洞的主要技术集中在出口处,这会导致该据点的所有还未被摧毁的虫洞被一同摧毁。而从这个据点出发的虫洞则 不会摧毁 。
注意:摧毁只会导致虫洞不可用,而不会消除它的存在。
为了抗击敌人并维护各部队和各据点之间的联系,我方发展出了两种特种部队负责修复虫洞:
- A 型特种部队则可以将某个特定的虫洞修复。
- B 型特种部队可以将某据点的所有损坏的虫洞修复。
考虑到敌人打击的特点,我方并未在据点上储备过多的战略物资。因此只要这个据点的某一条虫洞被修复,处于可用状态,那么这个据点也是可用的。
我方掌握了一种苛刻的空间特性,利用这一特性我方战舰可以沿着虫洞瞬移到敌方阵营,实现精确打击。
为了把握发动反攻的最佳时机,指挥部必须关注战场上的所有变化,为了寻找一个能够进行反攻的时刻。总指挥认为:
- 如果从我方的任何据点出发,在选择了合适的路线的前提下,可以进行无限次的虫洞穿梭(可以多次经过同一据点或同一虫洞),那么这个据点就可以 实现反击 。
- 为了使虫洞穿梭的过程连续,尽量减少战舰在据点切换虫洞时的质能损耗,当且仅当 只有一个从该据点出发的虫洞可用 时,这个据点可以 实现连续穿梭 。
- 如果我方所有据点都可以 实现反击 ,也都可以 实现连续穿梭 ,那么这个时刻就是一个绝佳的 反攻 时刻。
总司令为你下达命令,要求你根据战场上实时反馈的信息,迅速告诉他当前的时刻是否能够进行一次 反攻 。
输入格式
输入的第一行包含两个正整数 \(n,m\)。
接下来 \(m\) 行每行两个数 \(u,v\),表示一个从据点 \(u\) 出发到据点 \(v\) 的虫洞。保证 \(u \ne v\),保证不会有两条相同的虫洞。初始时所有的虫洞和据点都是完好的。
接下来一行一个正整数 \(q\) 表示询问个数。
接下来 \(q\) 行每行表示一次询问或操作。首先读入一个正整数 \(t\) 表示指令类型:
- 若 \(t = 1\),接下来两个整数 \(u, v\) 表示敌人摧毁了从据点 \(u\) 出发到据点 \(v\) 的虫洞。保证该虫洞存在且未被摧毁。
- 若 \(t = 2\),接下来一个整数 \(u\) 表示敌人摧毁了据点 \(u\)。如果该据点的虫洞已全部被摧毁,那么这次袭击不会有任何效果。
- 若 \(t = 3\),接下来两个整数 \(u, v\) 表示我方修复了从据点 \(u\) 出发到据点 \(v\) 的虫洞。保证该虫洞存在且被摧毁。
- 若 \(t = 4\),接下来一个整数 \(u\) 表示我方修复了据点 \(u\)。如果该据点没有被摧毁的虫洞,那么这次修复不会有任何效果。
在每次指令执行之后,你需要判断能否进行一次反攻。如果能则输出 YES
否则输出 NO
。
输出格式
输出一共 \(q\) 行。对于每个指令,输出这个指令执行后能否进行反攻。
样例 #1
样例输入 #1
3 6
2 3
2 1
1 2
1 3
3 1
3 2
11
1 3 2
1 2 3
1 1 3
1 1 2
3 1 3
3 3 2
2 3
1 3 1
3 1 3
4 2
1 3 2
样例输出 #1
NO
NO
YES
NO
YES
NO
NO
NO
YES
NO
NO
提示
【样例解释 #1】
虫洞状态可以参考下面的图片, 图中的边表示存在且未被摧毁的虫洞:
【样例 #2】
见附件中的 galaxy/galaxy2.in
与 galaxy/galaxy2.ans
。
【样例 #3】
见附件中的 galaxy/galaxy3.in
与 galaxy/galaxy3.ans
。
【样例 #4】
见附件中的 galaxy/galaxy4.in
与 galaxy/galaxy4.ans
。
【数据范围】
对于所有数据保证:\(1 \le n \le 5 \times {10}^5\),\(1 \le m \le 5 \times {10}^5\),\(1 \le q \le 5 \times {10}^5\)。
测试点 | \(n \le\) | \(m \le\) | \(q \le\) | 特殊限制 |
---|---|---|---|---|
\(1 \sim 3\) | \(10\) | \(20\) | \(50\) | 无 |
\(4 \sim 8\) | \({10}^3\) | \({10}^4\) | \({10}^3\) | 无 |
\(9 \sim 10\) | \(5 \times {10}^5\) | \(5 \times {10}^5\) | \(5 \times {10}^5\) | 保证没有 \(t = 2\) 和 \(t = 4\) 的情况 |
\(11 \sim 12\) | \(5 \times {10}^5\) | \(5 \times {10}^5\) | \(5 \times {10}^5\) | 保证没有 \(t = 4\) 的情况 |
\(13 \sim 16\) | \({10}^5\) | \(5 \times {10}^5\) | \(5 \times {10}^5\) | 无 |
\(17 \sim 20\) | \(5 \times {10}^5\) | \(5\times 10^5\) | \(5 \times {10}^5\) | 无 |
信息
- ID
- 1229
- 难度
- (无)
- 分类
- (无)
- 标签
- (无)
- 递交数
- 0
- 已通过
- 0
- 通过率
- ?
- 上传者