绝世【】题II

绝世【】题II

暂无测试数据。

绝世【】题II

题目背景

啊啊啊宝宝你是一个

\(
\begin{aligned}
& \left( \det \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \sin x \, dx \right) + \left( \lim_{x\to 0} \frac{\sin x}{x} - 1 \right) + \left( \sum_{n=1}^{\infty} \left( \frac{1}{2^n} - \frac{1}{2^n} \right) \right) + \left( \nabla \cdot (\nabla \times \mathbf{F}) \right) + \left( \oint_{|z|=1} z \, dz \right) + \left( \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{-\infty}^{\infty} e^{-x^2} \, dx - \sqrt{\pi} \right) + \left( \frac{d}{dx}(x^2) - 2x \right) + \left( \int_{0}^{1} (2x - 2x) \, dx \right) + \left( \det \begin{pmatrix} \int_0^1 x \, dx & \int_0^1 x^2 \, dx \\ 2\int_0^1 x \, dx & 2\int_0^1 x^2 \, dx \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \sin(2x) \, dx \right) + \left( \lim_{x\to 0} \frac{\sin(2x)}{x} - 2 \right) + \left( \sum_{n=1}^{100} \left( \frac{1}{n} - \frac{1}{n} \right) \right) + \left( \nabla \cdot (\nabla \times (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})) \right) + \left( \oint_{|z|=1} \frac{1}{z^2} \, dz \right) + \left( \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{0}^{\pi} \cos x \, dx \right) + \left( \frac{d^2}{dx^2}(x^3) - 6x \right) + \left( \int_{0}^{1} e^x \, dx - \int_{0}^{1} e^x \, dx \right) + \left( \det \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \right) + \left( \int_{0}^{\pi/2} \sin(2x) \, dx - \int_{0}^{\pi/2} \sin(2x) \, dx \right) + \left( \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n - e \right) + \left( \sum_{k=0}^{n} \binom{n}{k} - 2^n \right) + \left( \nabla \times (\nabla f) \right) + \left( \oint_{|z|=2} \frac{1}{z} \, dz - 2\pi i \right) + \left( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \mathbf{j} \right) + \left( \int_{-1}^{1} x^3 \, dx \right) + \left( \frac{d}{dx}(\cos x) + \sin x \right) + \left( \int_{0}^{\pi} \sin x \, dx - 2 \right) + \left( \det \begin{pmatrix} \sin 0 & \cos 0 \\ \sin 0 & \cos 0 \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \cos(2x) \, dx \right) + \left( \lim_{x\to\infty} \frac{1}{x} \right) + \left( \sum_{n=1}^{1000} (0.001 - 0.001) \right) + \left( \nabla \cdot (y\mathbf{i} - x\mathbf{j}) \right) + \left( \oint_{|z|=1} \frac{z^2}{z^2} \, dz - 2\pi i \right) + \left( \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \mathbf{k} \right) + \left( \int_{0}^{1} (x^2 - x^2) \, dx \right) + \left( \frac{d}{dx}(e^x) - e^x \right) + \left( \int_{0}^{\pi/2} \cos x \, dx - 1 \right) + \left( \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \sin(3x) \, dx \right) + \left( \lim_{x\to 1} \frac{x^2-1}{x-1} - 2 \right) + \left( \sum_{n=0}^{\infty} (0.5^n - 0.5^n) \right) + \left( \nabla \times (x^2\mathbf{i} + y^2\mathbf{j}) \cdot \mathbf{k} \right) + \left( \oint_{|z|=1} \frac{1}{z^3} \, dz \right) + \left( \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{0}^{2} (3x^2 - 3x^2) \, dx \right) + \left( \frac{d^2}{dx^2}(\sin x) + \sin x \right) + \left( \int_{0}^{\pi} \cos(2x) \, dx \right) + \left( \det \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} - b \right) + \left( \int_{0}^{\infty} e^{-x} \, dx - 1 \right) + \left( \lim_{x\to 0} \frac{e^x - 1}{x} - 1 \right) + \left( \sum_{n=1}^{100} \frac{(-1)^n}{n} + \sum_{n=1}^{100} \frac{(-1)^{n+1}}{n} \right) + \left( \nabla \cdot (\nabla (x^2 + y^2)) - 4 \right) + \left( \oint_{|z|=1} \frac{e^z}{z} \, dz - 2\pi i \right) + \left( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{-1}^{1} x^5 \, dx \right) + \left( \frac{d}{dx}(\ln x) - \frac{1}{x} \right) + \left( \int_{0}^{\pi/2} \tan x \, dx - \int_{0}^{\pi/2} \tan x \, dx \right) + \left( \det \begin{pmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{pmatrix} - 1 \right) + \left( \int_{0}^{2\pi} \sin(4x) \, dx \right) + \left( \lim_{x\to 0} \frac{\cos x - 1}{x} \right) + \left( \sum_{n=1}^{\infty} \left( \frac{1}{n(n+1)} - \frac{1}{n} + \frac{1}{n+1} \right) \right) + \left( \nabla \times (\nabla \times \mathbf{A}) - \nabla(\nabla \cdot \mathbf{A}) + \nabla^2 \mathbf{A} \right) + \left( \oint_{|z|=1} \frac{\sin z}{z} \, dz \right) + \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \mathbf{j} \right) + \left( \int_{0}^{1} \frac{1}{1+x^2} \, dx - \frac{\pi}{4} \right) + \left( \frac{d}{dx}(\arctan x) - \frac{1}{1+x^2} \right) + \left( \int_{0}^{\pi} \sin^2 x \, dx - \frac{\pi}{2} \right) + \left( \det \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} - 2 \right) + \left( \int_{0}^{\infty} \frac{\sin x}{x} \, dx - \frac{\pi}{2} \right) + \left( \lim_{x\to 0} (1+x)^{1/x} - e \right) + \left( \sum_{n=0}^{\infty} \frac{x^n}{n!} - e^x \right) + \left( \nabla \cdot (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) - 3 \right) + \left( \oint_{|z|=1} \frac{\cos z}{z^2} \, dz \right) + \left( \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot \mathbf{k} \right) + \left( \int_{0}^{1} (1 - 1) \, dx \right) + \left( \frac{d}{dx}(\text{constant}) \right) + \left( \int_{a}^{b} f'(x) \, dx - f(b) + f(a) \right) + \left( \det \begin{pmatrix} a & b \\ ka & kb \end{pmatrix} \right) + \left( \int_{0}^{2\pi} e^{inx} \, dx \right) + \left( \lim_{x\to \infty} \left(1 + \frac{a}{x}\right)^x - e^a \right) + \left( \sum_{n=1}^{N} n - \frac{N(N+1)}{2} \right) + \left( \nabla(fg) - f\nabla g - g\nabla f \right) + \left( \oint_{C} \mathbf{F} \cdot d\mathbf{r} - \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \right) + \left( \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^2 - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{0}^{\infty} e^{-ax} \, dx - \frac{1}{a} \right) + \left( \frac{d}{dx}\left(\int_{0}^{x} f(t) \, dt\right) - f(x) \right) + \left( \int_{0}^{\pi} \cos^2 x \, dx - \frac{\pi}{2} \right) + \left( \det \begin{pmatrix} \lambda - a & -b \\ -c & \lambda - d \end{pmatrix} - (\lambda^2 - (a+d)\lambda + (ad-bc)) \right) + \left( \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx - \pi \right) + \left( \lim_{x\to 0} \frac{\ln(1+x)}{x} - 1 \right) + \left( \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{\pi^2}{6} \right) + \left( \nabla \cdot \left( \frac{\mathbf{r}}{r^3} \right) - 4\pi \delta(\mathbf{r}) \right) + \left( \oint_{|z|=R} \frac{f(z)}{(z-a)^n} \, dz - \frac{2\pi i}{(n-1)!} f^{(n-1)}(a) \right) + \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} - \begin{pmatrix} 16 & 19 \\ 36 & 43 \end{pmatrix} \cdot \mathbf{j} \right) + \left( \int_{0}^{1} x(1-x) \, dx - \frac{1}{6} \right) + \left( \frac{d}{dx}(\sinh x) - \cosh x \right) + \left( \int_{0}^{\infty} x e^{-x} \, dx - 1 \right) + \left( \det \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} - 1 \right) + \left( \int_{-\pi}^{\pi} \cos(mx)\cos(nx) \, dx - \pi \delta_{mn} \right) + \left( \lim_{x\to 0} \frac{\tan x}{x} - 1 \right) + \left( \sum_{n=0}^{\infty} r^n - \frac{1}{1-r} \right) + \left( \nabla^2 \left( \frac{1}{r} \right) + 4\pi \delta(\mathbf{r}) \right) + \left( \oint_{C} \frac{P(z)}{Q(z)} \, dz - 2\pi i \sum \text{Res} \right) + \left( \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \mathbf{k} \right) + \left( \int_{0}^{\infty} \frac{dx}{1+x^2} - \frac{\pi}{2} \right) + \left( \frac{d}{dx}(\sec x) - \sec x \tan x \right) + \left( \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} - \frac{\pi}{2} \right) + \left( \det \begin{pmatrix} A & B \\ C & D \end{pmatrix} - (AD - BC) \right) + \left( \int_{0}^{2\pi} \sin(mx)\sin(nx) \, dx - \pi \delta_{mn} \right) + \left( \lim_{n\to\infty} \sqrt[n]{n!} - \infty \right) + \left( \sum_{k=0}^{n} (-1)^k \binom{n}{k} \right) + \left( \nabla \cdot (\mathbf{A} \times \mathbf{B}) - \mathbf{B} \cdot (\nabla \times \mathbf{A}) + \mathbf{A} \cdot (\nabla \times \mathbf{B}) \right) + \left( \oint_{|z|=1} \frac{dz}{z-a} - 2\pi i \right) + \left( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^2 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \mathbf{i} \right) + \left( a \right)
\end{aligned}
\)

题目描述

\(
\begin{aligned}
\left( \det \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \sin x \, dx \right) + \left( \lim_{x\to 0} \frac{\sin x}{x} - 1 \right) + \left( \sum_{n=1}^{\infty} \left( \frac{1}{2^n} - \frac{1}{2^n} \right) \right) + \left( \nabla \cdot (\nabla \times \mathbf{F}) \right) + \left( \oint_{|z|=1} z \, dz \right) + \left( \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{-\infty}^{\infty} e^{-x^2} \, dx - \sqrt{\pi} \right) + \left( \frac{d}{dx}(x^2) - 2x \right) + \left( \int_{0}^{1} (2x - 2x) \, dx \right) + \left( \det \begin{pmatrix} \int_0^1 x \, dx & \int_0^1 x^2 \, dx \\ 2\int_0^1 x \, dx & 2\int_0^1 x^2 \, dx \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \sin(2x) \, dx \right) + \left( \lim_{x\to 0} \frac{\sin(2x)}{x} - 2 \right) + \left( \sum_{n=1}^{100} \left( \frac{1}{n} - \frac{1}{n} \right) \right) + \left( \nabla \cdot (\nabla \times (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})) \right) + \left( \oint_{|z|=1} \frac{1}{z^2} \, dz \right) + \left( \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{0}^{\pi} \cos x \, dx \right) + \left( \frac{d^2}{dx^2}(x^3) - 6x \right) + \left( \int_{0}^{1} e^x \, dx - \int_{0}^{1} e^x \, dx \right) + \left( \det \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \right) + \left( \int_{0}^{\pi/2} \sin(2x) \, dx - \int_{0}^{\pi/2} \sin(2x) \, dx \right) + \left( \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n - e \right) + \left( \sum_{k=0}^{n} \binom{n}{k} - 2^n \right) + \left( \nabla \times (\nabla f) \right) + \left( \oint_{|z|=2} \frac{1}{z} \, dz - 2\pi i \right) + \left( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \mathbf{j} \right) + \left( \int_{-1}^{1} x^3 \, dx \right) + \left( \frac{d}{dx}(\cos x) + \sin x \right) + \left( \int_{0}^{\pi} \sin x \, dx - 2 \right) + \left( \det \begin{pmatrix} \sin 0 & \cos 0 \\ \sin 0 & \cos 0 \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \cos(2x) \, dx \right) + \left( \lim_{x\to\infty} \frac{1}{x} \right) + \left( \sum_{n=1}^{1000} (0.001 - 0.001) \right) + \left( \nabla \cdot (y\mathbf{i} - x\mathbf{j}) \right) + \left( \oint_{|z|=1} \frac{z^2}{z^2} \, dz - 2\pi i \right) + \left( \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \mathbf{k} \right) + \left( \int_{0}^{1} (x^2 - x^2) \, dx \right) + \left( \frac{d}{dx}(e^x) - e^x \right) + \left( \int_{0}^{\pi/2} \cos x \, dx - 1 \right) + \left( \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right) + \left( \int_{0}^{2\pi} \sin(3x) \, dx \right) + \left( \lim_{x\to 1} \frac{x^2-1}{x-1} - 2 \right) + \left( \sum_{n=0}^{\infty} (0.5^n - 0.5^n) \right) + \left( \nabla \times (x^2\mathbf{i} + y^2\mathbf{j}) \cdot \mathbf{k} \right) + \left( \oint_{|z|=1} \frac{1}{z^3} \, dz \right) + \left( \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{0}^{2} (3x^2 - 3x^2) \, dx \right) + \left( \frac{d^2}{dx^2}(\sin x) + \sin x \right) + \left( \int_{0}^{\pi} \cos(2x) \, dx \right) + \left( \det \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} - b \right) + \left( \int_{0}^{\infty} e^{-x} \, dx - 1 \right) + \left( \lim_{x\to 0} \frac{e^x - 1}{x} - 1 \right) + \left( \sum_{n=1}^{100} \frac{(-1)^n}{n} + \sum_{n=1}^{100} \frac{(-1)^{n+1}}{n} \right) + \left( \nabla \cdot (\nabla (x^2 + y^2)) - 4 \right) + \left( \oint_{|z|=1} \frac{e^z}{z} \, dz - 2\pi i \right) + \left( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{-1}^{1} x^5 \, dx \right) + \left( \frac{d}{dx}(\ln x) - \frac{1}{x} \right) + \left( \int_{0}^{\pi/2} \tan x \, dx - \int_{0}^{\pi/2} \tan x \, dx \right) + \left( \det \begin{pmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{pmatrix} - 1 \right) + \left( \int_{0}^{2\pi} \sin(4x) \, dx \right) + \left( \lim_{x\to 0} \frac{\cos x - 1}{x} \right) + \left( \sum_{n=1}^{\infty} \left( \frac{1}{n(n+1)} - \frac{1}{n} + \frac{1}{n+1} \right) \right) + \left( \nabla \times (\nabla \times \mathbf{A}) - \nabla(\nabla \cdot \mathbf{A}) + \nabla^2 \mathbf{A} \right) + \left( \oint_{|z|=1} \frac{\sin z}{z} \, dz \right) + \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \mathbf{j} \right) + \left( \int_{0}^{1} \frac{1}{1+x^2} \, dx - \frac{\pi}{4} \right) + \left( \frac{d}{dx}(\arctan x) - \frac{1}{1+x^2} \right) + \left( \int_{0}^{\pi} \sin^2 x \, dx - \frac{\pi}{2} \right) + \left( \det \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} - 2 \right) + \left( \int_{0}^{\infty} \frac{\sin x}{x} \, dx - \frac{\pi}{2} \right) + \left( \lim_{x\to 0} (1+x)^{1/x} - e \right) + \left( \sum_{n=0}^{\infty} \frac{x^n}{n!} - e^x \right) + \left( \nabla \cdot (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) - 3 \right) + \left( \oint_{|z|=1} \frac{\cos z}{z^2} \, dz \right) + \left( \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot \mathbf{k} \right) + \left( \int_{0}^{1} (1 - 1) \, dx \right) + \left( \frac{d}{dx}(\text{constant}) \right) + \left( \int_{a}^{b} f'(x) \, dx - f(b) + f(a) \right) + \left( \det \begin{pmatrix} a & b \\ ka & kb \end{pmatrix} \right) + \left( \int_{0}^{2\pi} e^{inx} \, dx \right) + \left( \lim_{x\to \infty} \left(1 + \frac{a}{x}\right)^x - e^a \right) + \left( \sum_{n=1}^{N} n - \frac{N(N+1)}{2} \right) + \left( \nabla(fg) - f\nabla g - g\nabla f \right) + \left( \oint_{C} \mathbf{F} \cdot d\mathbf{r} - \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \right) + \left( \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^2 - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \mathbf{i} \right) + \left( \int_{0}^{\infty} e^{-ax} \, dx - \frac{1}{a} \right) + \left( \frac{d}{dx}\left(\int_{0}^{x} f(t) \, dt\right) - f(x) \right) + \left( \int_{0}^{\pi} \cos^2 x \, dx - \frac{\pi}{2} \right) + \left( \det \begin{pmatrix} \lambda - a & -b \\ -c & \lambda - d \end{pmatrix} - (\lambda^2 - (a+d)\lambda + (ad-bc)) \right) + \left( \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx - \pi \right) + \left( \lim_{x\to 0} \frac{\ln(1+x)}{x} - 1 \right) + \left( \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{\pi^2}{6} \right) + \left( \nabla \cdot \left( \frac{\mathbf{r}}{r^3} \right) - 4\pi \delta(\mathbf{r}) \right) + \left( \oint_{|z|=R} \frac{f(z)}{(z-a)^n} \, dz - \frac{2\pi i}{(n-1)!} f^{(n-1)}(a) \right) + \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} - \begin{pmatrix} 16 & 19 \\ 36 & 43 \end{pmatrix} \cdot \mathbf{j} \right) + \left( \int_{0}^{1} x(1-x) \, dx - \frac{1}{6} \right) + \left( \frac{d}{dx}(\sinh x) - \cosh x \right) + \left( \int_{0}^{\infty} x e^{-x} \, dx - 1 \right) + \left( \det \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} - 1 \right) + \left( \int_{-\pi}^{\pi} \cos(mx)\cos(nx) \, dx - \pi \delta_{mn} \right) + \left( \lim_{x\to 0} \frac{\tan x}{x} - 1 \right) + \left( \sum_{n=0}^{\infty} r^n - \frac{1}{1-r} \right) + \left( \nabla^2 \left( \frac{1}{r} \right) + 4\pi \delta(\mathbf{r}) \right) + \left( \oint_{C} \frac{P(z)}{Q(z)} \, dz - 2\pi i \sum \text{Res} \right) + \left( \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \mathbf{k} \right) + \left( \int_{0}^{\infty} \frac{dx}{1+x^2} - \frac{\pi}{2} \right) + \left( \frac{d}{dx}(\sec x) - \sec x \tan x \right) + \left( \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} - \frac{\pi}{2} \right) + \left( \det \begin{pmatrix} A & B \\ C & D \end{pmatrix} - (AD - BC) \right) + \left( \int_{0}^{2\pi} \sin(mx)\sin(nx) \, dx - \pi \delta_{mn} \right) + \left( \lim_{n\to\infty} \sqrt[n]{n!} - \infty \right) + \left( \sum_{k=0}^{n} (-1)^k \binom{n}{k} \right) + \left( \nabla \cdot (\mathbf{A} \times \mathbf{B}) - \mathbf{B} \cdot (\nabla \times \mathbf{A}) + \mathbf{A} \cdot (\nabla \times \mathbf{B}) \right) + \left( \oint_{|z|=1} \frac{dz}{z-a} - 2\pi i \right) + \left( \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^2 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \mathbf{i} \right) + \left( a \right)
\end{aligned}
\)

输入格式

???

输出格式

一个数表示答案

输入输出样例 #1

输入 #1

???

输出 #1

???

说明/提示

鬼知道我跟 \(AI\) 聊了多久。。。

输入为全部未知数。

输入输出均在int范围内。

信息

ID
1024
难度
10
分类
(无)
标签
(无)
递交数
2
已通过
0
通过率
0%
上传者