选数

选数

测试数据来自 system/1128

题目描述

已知 \(n\) 个整数 \(x_1,x_2,\cdots,x_n\),以及 \(1\) 个整数 \(k\)(\(k<n\))。从 \(n\) 个整数中任选 \(k\) 个整数相加,可分别得到一系列的和。例如当 \(n=4\),\(k=3\),\(4\) 个整数分别为 \(3,7,12,19\) 时,可得全部的组合与它们的和为:

\(3+7+12=22\)

\(3+7+19=29\)

\(7+12+19=38\)

\(3+12+19=34\)

现在,要求你计算出和为素数共有多少种。

例如上例,只有一种的和为素数:\(3+7+19=29\)。

输入格式

第一行两个空格隔开的整数 \(n,k\)(\(1 \le n \le 20\),\(k<n\))。

第二行 \(n\) 个整数,分别为 \(x_1,x_2,\cdots,x_n\)(\(1 \le x_i \le 5\times 10^6\))。

输出格式

输出一个整数,表示种类数。

输入输出样例 #1

输入 #1

4 3
3 7 12 19

输出 #1

1

说明/提示

【题目来源】

NOIP 2002 普及组第二题

信息

ID
1023
难度
2
分类
搜索 | 搜索与剪枝素数判定 点击显示
标签
递交数
0
已通过
0
通过率
?
上传者