Sumdiv
Description
Consider two natural numbers \(A\) and \(B\). Let \(S\) be the sum of all natural divisors of \(A^B\). Determine \(S\) modulo \(9901\) (the rest of the division of \(S\) by \(9901\)).
Input
The only line contains the two natural numbers \(A\) and \(B\), separated by blanks.
Output
The only line of the output will contain \(S\) modulo \(9901\).
Limitations
\(1 \le A,B \le 5 \times 10^7\)
Samples
Sample #1
Input
2 3
Output
15
Hint
\(2^3 = 8\).
The natural divisors of \(8\) are: \({1,2,4,8}\). Their sum is \(15\).
\(15 \mod 9901 = 15\) (that should be output).
Simplified
求 \(A^B\) 的所有约数之和模 \(9901\)。
Source
算法竞赛进阶指南 POJ
信息
- ID
- 1008
- 难度
- 9
- 分类
- (无)
- 标签
- (无)
- 递交数
- 9
- 已通过
- 2
- 通过率
- 22%
- 被复制
- 1
- 上传者