【ZYCode R4】这很南京
题目描述
上学期期末推迟至本学期
\(n\) 天的考试期举行 \(m\) 场考试,每天可以考 \(a_i\) 门,每门课要改出来需要 \(t_i\) 天。
学生们对每门课的仇恨值是 \(h_i\),他们当然希望每门课越晚越被改出来。当他们在考试期结束后第 \(x\) 天知道第 \(i\) 科的成绩,他们的快乐值会增加 \(x \times h_i\) 。请你规划考试时间安排,使学生的快乐值最大。
PS: 老师们很良心,他们不会在所有考试没结束的时候告诉你成绩,如果某一门科目在考试期间被改出来了,你会在考试期结束当天后一天早上被告知成绩。
输入格式
\(n\) \(m\)
\(a_1\) , \(a_2\) , \(a_3\) , \(......\) , \(a_n\)
\(t_1\) , \(t_2\) , \(t_3\) , \(......\) , \(t_m\)
\(h_1\) , \(h_2\) , \(h_3\) , \(......\) , \(h_m\)
输出格式
最大快乐值
样例
样例输入 1
3 6
2 2 2
2 1 1 2 5 1
5 4 1 3 100 2
样例输出 1
520
提示说明
在第一天安排第二门和第三门
在第二天安排第四门和第六门
在第三天安排第一门和第五门
则考完试后:
第一天出第二三四六门
第二天出第一门
第五天出第五门
对于 \( 30 \% \)的数据
\( m \le 10 \)
对于 \( 60 \% \) 的数据
\( m \le 2000\)
对于 \(100\%\) 的数据
\(m \le 2 \times 10^5\)
\(a_i > 0 \)
\( a_1+a_2+a_3.......a_n=m\)
\(h_i,t_i< 10^9\)