[CSP-J 2022 第二题] 解密

[CSP-J 2022 第二题] 解密

题目描述

给定一个正整数 \(k\),有 \(k\) 次询问,每次给定三个正整数 \(n_i, e_i, d_i\),求两个正整数 \(p_i, q_i\),使 \(n_i = p_i \times q_i\)、\(e_i \times d_i = (p_i - 1)(q_i - 1) + 1\)。

输入格式

第一行一个正整数 \(k\),表示有 \(k\) 次询问。

接下来 \(k\) 行,第 \(i\) 行三个正整数 \(n_i, d_i, e_i\)。

输出格式

输出 \(k\) 行,每行两个正整数 \(p_i, q_i\) 表示答案。

为使输出统一,你应当保证 \(p_i \leq q_i\)。

如果无解,请输出 NO

样例 #1

样例输入 #1

10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109

样例输出 #1

2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88

提示

【样例 #2】

见附件中的 decode/decode2.indecode/decode2.ans

【样例 #3】

见附件中的 decode/decode3.indecode/decode3.ans

【样例 #4】

见附件中的 decode/decode4.indecode/decode4.ans

【数据范围】

以下记 \(m = n - e \times d + 2\)。

保证对于 \(100\%\) 的数据,\(1 \leq k \leq {10}^5\),对于任意的 \(1 \leq i \leq k\),\(1 \leq n_i \leq {10}^{18}\),\(1 \leq e_i \times d_i \leq {10}^{18}\)
,\(1 \leq m \leq {10}^9\)。

测试点编号 \(k \leq\) \(n \leq\) \(m \leq\) 特殊性质
\(1\) \(10^3\) \(10^3\) \(10^3\) 保证有解
\(2\) \(10^3\) \(10^3\) \(10^3\)
\(3\) \(10^3\) \(10^9\) \(6\times 10^4\) 保证有解
\(4\) \(10^3\) \(10^9\) \(6\times 10^4\)
\(5\) \(10^3\) \(10^9\) \(10^9\) 保证有解
\(6\) \(10^3\) \(10^9\) \(10^9\)
\(7\) \(10^5\) \(10^{18}\) \(10^9\) 保证若有解则 \(p=q\)
\(8\) \(10^5\) \(10^{18}\) \(10^9\) 保证有解
\(9\) \(10^5\) \(10^{18}\) \(10^9\)
\(10\) \(10^5\) \(10^{18}\) \(10^9\)

信息

ID
1008
难度
2
分类
(无)
标签
递交数
1
已通过
1
通过率
100%
上传者