[CSP-J 2023 第三题] 一元二次方程
题目背景
众所周知,对一元二次方程 \(ax ^ 2 + bx + c = 0, (a \neq 0)\),可以用以下方式求实数解:
- 计算 \(\Delta = b ^ 2 - 4ac\),则:
- 若 \(\Delta < 0\),则该一元二次方程无实数解。
- 否则 \(\Delta \geq 0\),此时该一元二次方程有两个实数解 \(x _ {1, 2} = \frac{-b \pm \sqrt \Delta}{2a}\)。
例如:
- \(x ^ 2 + x + 1 = 0\) 无实数解,因为 \(\Delta = 1 ^ 2 - 4 \times 1 \times 1 = -3 < 0\)。
- \(x ^ 2 - 2x + 1 = 0\) 有两相等实数解 \(x _ {1, 2} = 1\)。
- \(x ^ 2 - 3x + 2 = 0\) 有两互异实数解 \(x _ 1 = 1, x _ 2 = 2\)。
在题面描述中 \(a\) 和 \(b\) 的最大公因数使用 \(\gcd(a, b)\) 表示。例如 \(12\) 和 \(18\) 的最大公因数是 \(6\),即 \(\gcd(12, 18) = 6\)。
题目描述
现在给定一个一元二次方程的系数 \(a, b, c\),其中 \(a, b, c\) 均为整数且 \(a \neq 0\)。你需要判断一元二次方程 \(a x ^ 2 + bx + c = 0\) 是否有实数解,并按要求的格式输出。
在本题中输出有理数 \(v\) 时须遵循以下规则:
- 由有理数的定义,存在唯一的两个整数 \(p\) 和 \(q\),满足 \(q > 0\),\(\gcd(p, q) = 1\) 且 \(v = \frac pq\)。
- 若 \(q = 1\),则输出
{p}
,否则输出{p}/{q}
,其中{n}
代表整数 \(n\) 的值; 例如:
- 当 \(v = -0.5\) 时,\(p\) 和 \(q\) 的值分别为 \(-1\) 和 \(2\),则应输出
-1/2
; - 当 \(v = 0\) 时,\(p\) 和 \(q\) 的值分别为 \(0\) 和 \(1\),则应输出
0
。
- 当 \(v = -0.5\) 时,\(p\) 和 \(q\) 的值分别为 \(-1\) 和 \(2\),则应输出
对于方程的求解,分两种情况讨论:
- 若 \(\Delta = b ^ 2 - 4ac < 0\),则表明方程无实数解,此时你应当输出
NO
; 否则 \(\Delta \geq 0\),此时方程有两解(可能相等),记其中较大者为 \(x\),则:
- 若 \(x\) 为有理数,则按有理数的格式输出 \(x\)。
否则根据上文公式,\(x\) 可以被唯一表示为 \(x = q _ 1 + q _ 2 \sqrt r\) 的形式,其中:
- \(q _ 1, q _ 2\) 为有理数,且 \(q _ 2 > 0\);
- \(r\) 为正整数且 \(r > 1\),且不存在正整数 \(d > 1\) 使 \(d ^ 2 \mid r\)(即 \(r\) 不应是 \(d ^ 2\) 的倍数);
此时:
- 若 \(q _ 1 \neq 0\),则按有理数的格式输出 \(q _ 1\),并再输出一个加号
+
; - 否则跳过这一步输出;
随后:
- 若 \(q _ 2 = 1\),则输出
sqrt({r})
; - 否则若 \(q _ 2\) 为整数,则输出
{q2}*sqrt({r})
; - 否则若 \(q _ 3 = \frac 1{q _ 2}\) 为整数,则输出
sqrt({r})/{q3}
; - 否则可以证明存在唯一整数 \(c, d\) 满足 \(c, d > 1, \gcd(c, d) = 1\) 且 \(q _ 2 = \frac cd\),此时输出
{c}*sqrt({r})/{d}
;
上述表示中
{n}
代表整数{n}
的值,详见样例。如果方程有实数解,则按要求的格式输出两个实数解中的较大者。否则若方程没有实数解,则输出
NO
。
输入格式
输入的第一行包含两个正整数 \(T, M\),分别表示方程数和系数的绝对值上限。
接下来 \(T\) 行,每行包含三个整数 \(a, b, c\)。
输出格式
输出 \(T\) 行,每行包含一个字符串,表示对应询问的答案,格式如题面所述。
每行输出的字符串中间不应包含任何空格。
样例 #1
样例输入 #1
9 1000
1 -1 0
-1 -1 -1
1 -2 1
1 5 4
4 4 1
1 0 -432
1 -3 1
2 -4 1
1 7 1
样例输出 #1
1
NO
1
-1
-1/2
12*sqrt(3)
3/2+sqrt(5)/2
1+sqrt(2)/2
-7/2+3*sqrt(5)/2
提示
【样例 #2】
见附件中的 uqe/uqe2.in
与 uqe/uqe2.ans
。
【数据范围】
对于所有数据有:\(1 \leq T \leq 5000\),\(1 \leq M \leq 10 ^ 3\),\(|a|,|b|,|c| \leq M\),\(a \neq 0\)。
测试点编号 | \(M \leq\) | 特殊性质 A | 特殊性质 B | 特殊性质 C |
---|---|---|---|---|
\(1\) | \(1\) | 是 | 是 | 是 |
\(2\) | \(20\) | 否 | 否 | 否 |
\(3\) | \(10 ^ 3\) | 是 | 否 | 是 |
\(4\) | \(10 ^ 3\) | 是 | 否 | 否 |
\(5\) | \(10 ^ 3\) | 否 | 是 | 是 |
\(6\) | \(10 ^ 3\) | 否 | 是 | 否 |
\(7, 8\) | \(10 ^ 3\) | 否 | 否 | 是 |
\(9, 10\) | \(10 ^ 3\) | 否 | 否 | 否 |
其中:
- 特殊性质 A:保证 \(b = 0\);
- 特殊性质 B:保证 \(c = 0\);
- 特殊性质 C:如果方程有解,那么方程的两个解都是整数。
信息
- ID
- 1005
- 难度
- 3
- 分类
- (无)
- 标签
- 递交数
- 1
- 已通过
- 0
- 通过率
- 0%
- 上传者