/ WHOJ / 题库 /

[NOIP2015 普及组] 求和

[NOIP2015 普及组] 求和

题目描述

一条狭长的纸带被均匀划分出了\(n\)个格子,格子编号从\(1\)到\(n\)。每个格子上都染了一种颜色\(color_i\)用\([1,m]\)当中的一个整数表示),并且写了一个数字\(number_i\)。

定义一种特殊的三元组:\((x,y,z)\),其中\(x,y,z\)都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

\(1.\) \(xyz\)是整数,\(x<y<z,y-x=z-y\)

\(2.\) \(colorx=colorz\)

满足上述条件的三元组的分数规定为\((x+z) \times (number_x+number_z)\)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以\(10,007\)所得的余数即可。

格式

输入格式

第一行是用一个空格隔开的两个正整数\(n\)和\(m,n\)表纸带上格子的个数,\(m\)表纸带上颜色的种类数。

第二行有\(n\)用空格隔开的正整数,第\(i\)数字\(number\)表纸带上编号为\(i\)格子上面写的数字。

第三行有\(n\)用空格隔开的正整数,第\(i\)数字\(color\)表纸带上编号为\(i\)格子染的颜色。

输出格式

一个整数,表示所求的纸带分数除以\(10007\)所得的余数。

样例1

样例输入1

6 2
5 5 3 2 2 2
2 2 1 1 2 1

样例输出1

82

样例2

样例输入2

15 4
5 10 8 2 2 2 9 9 7 7 5 6 4 2 4
2 2 3 3 4 3 3 2 4 4 4 4 1 1 1

样例输出2

1388

样例1解释

纸带如题目描述中的图所示。

所有满足条件的三元组为: \((1, 3, 5), (4, 5, 6)\)。

所以纸带的分数为\((1 + 5) \times (5 + 2) + (4 + 6) \times (2 + 2) = 42 + 40 = 82\)。

限制

对于第 \(1\) 组至第 \(2\) 组数据, \(1 ≤ n ≤ 100, 1 ≤ m ≤ 5\);

对于第\( 3\) 组至第 \(4\) 组数据, \(1 ≤ n ≤ 3000, 1 ≤ m ≤ 100\);

对于第 \(5\) 组至第\( 6 \)组数据, \(1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000\),且不存在出现次数超过\( 20 \)的颜色;

对 于 全 部 \(10\) 组 数 据 , \(1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, 1 ≤ color_i ≤ m,1≤number_i≤100000\)