麦森数
测试数据来自 wjszez/1944
形如2^P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2^P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。任务:从文件中输入P(1000 < P < 3100000),计算2^P-1的位数和最后500位数字(用十进制高精度数表示)
Input
只包含一个整数P(1000 < P < 3100000)
Output
第一行:十进制高精度数2^P-1的位数。第2-11行:十进制高精度数2^P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)不必验证2^P-1与P是否为素数。
Sample Input
1279
Sample Output
386 00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000104079321946643990819252403273640855 38615262247266704805319112350403608059673360298012 23944173232418484242161395428100779138356624832346 49081399066056773207629241295093892203457731833496 61583550472959420547689811211693677147548478866962 50138443826029173234888531116082853841658502825560 46662248318909188018470682222031405210266984354887 32958028878050869736186900714720710555703168729087
信息
- ID
- 1981
- 难度
- (无)
- 分类
- (无)
- 标签
- 递交数
- 0
- 已通过
- 0
- 通过率
- ?
- 上传者