货币系统
测试数据来自 lrn5/1000
题目描述
在网友的国度中共有 \(n\) 种不同面额的货币,第 \(i\) 种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 \(n\)、面额数组为 \(a[1\dots n]\) 的货币系统记作 \((n,a)\)。
在一个完善的货币系统中,每一个非负整数的金额 \(x\) 都应该可以被表示出,即对每一个非负整数 \(x\),都存在 \(n\) 个非负整数 \(t[i]\) 满足 \(a[i] \times t[i]\) 的和为 \(x\)。然而, 在网友的国度中,货币系统可能是不完善的,即可能存在金额 \(x\) 不能被该货币系统表示出。例如在货币系统 \(n=3\), \(a=[2,5,9]\) 中,金额 \(1,3\) 就无法被表示出来。
两个货币系统 \((n,a)\) 和 \((m,b)\) 是等价的,当且仅当对于任意非负整数 \(x\),它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。
现在网友们打算简化一下货币系统。他们希望找到一个货币系统 \((m,b)\),满足 \((m,b)\) 与原来的货币系统 \((n,a)\) 等价,且 \(m\) 尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的 \(m\)。
输入格式
输入文件的第一行包含一个整数 \(T\),表示数据的组数。
接下来按照如下格式分别给出 \(T\) 组数据。 每组数据的第一行包含一个正整数 \(n\)。接下来一行包含 \(n\) 个由空格隔开的正整数 \(a[i]\)。
输出格式
输出文件共有 \(T\) 行,对于每组数据,输出一行一个正整数,表示所有与 \((n,a)\) 等价的货币系统 \((m,b)\) 中,最小的 \(m\)。
输入输出样例
样例输入
2
4
3 19 10 6
5
11 29 13 19 17
样例输出
2
5
样例解释
在第一组数据中,货币系统 \((2, [3,10])\) 和给出的货币系统 \((n, a)\) 等价,并可以验证不存在 \(m < 2\) 的等价的货币系统,因此答案为 \(2\)。
数据范围
测试点编号 | \(n\) | \(a[i]\) |
---|---|---|
\(1\sim 3\) | \(=2\) | \(\le 10^3\) |
\(4\sim 6\) | \(=3\) | \(\le 10^3\) |
\(7,\ 8\) | \(=4\) | \(\le 10^3\) |
\(9,\ 10\) | \(=5\) | \(\le 10^3\) |
\(11\sim 13\) | \(\le 13\) | \(\le 16\) |
\(14\sim 16\) | \(\le 25\) | \(\le 40\) |
\(17\sim 20\) | \(\le 100\) | \(\le 2.5\times 10^4\) |
对于全部数据,满足 \(1\le T\le 20,\ n,a[i]\ge 1\)。
在第二组数据中,可以验证不存在 \(m < n\) 的等价的货币系统,因此答案为 \(5\)。
信息
- ID
- 1161
- 难度
- (无)
- 分类
- (无)
- 标签
- 递交数
- 0
- 已通过
- 0
- 通过率
- ?
- 上传者