Fib3 Queue
P1001 Fib3 Queue
Difficulty: \(\color{grey}100\)
Problem Statement
You need to create a Fib3 Queue. (A Fib3 Queue is a queue that from the 4th element on, its value equals the sum of the three consecutive elements before.) We will give you the \(x^{\rm th}\), the \((x-1)^{\rm th}\) and the \((x-2)^{\rm th}\) element and you need to work out the 1st element.
Constraints
- \(3 \le x \le 100\)
- \(1 \le q_{x-2} \le q_{x-1} \le q_{x} \le 100\)
Input
\(x\)
\(q_x\ q_{x-1}\ q_{x-2}\)
Note that \(q_x\), \(q_{x-1}\), \(q_{x-2}\) may be not in order.
Output
Output the queue's 1st element.
Samples
Input 1
4
9 5 3
Output 1
1
We can get the answer by calculating \(9-5-3=1\).
Input 2
3
3 5 9
Output 2
3
We can get the answer \(3\) immediately from the input.
Input 3
10
3 5 8
Output 3
-7
Input 4
100
100 100 100
Output 4
-36198145043300
Note that the result may not fits in a \(32\)bit integer.
信息
- ID
- 1001
- 难度
- 100
- 分类
- (无)
- 标签
- (无)
- 递交数
- 35
- 已通过
- 3
- 通过率
- 9%
- 上传者